iriver‘s and Interrupts Service Mechanism @

0-D }Assume that a serial input at the SI reads a byte from a network and generates three types of

upts. T generates timer-overflow and timer-capture interrupts, called TF and TCAPTURE interrupts.

base interrupt latencies are as follows. ‘

en the seventh byte is received, the controller generates interrupt FIFO_FULL and a FIFO_FULL

1 ﬁg sets in SO. Assume that it is the top priority serial interrupt and the ISR execution time is Tey.

(FIFO_FULL). For the FIFO_FULL interrupt, the interrupt latency is Toyech + T gisable DECAUSE it is @

thp priority ISR. ' '

3 ' en the zeroth byte is received, the SI generates an interrupt RI and an RI flag sets in the status

Hgister SO. Assume RI has the lowest priority serial interrupt and RI ISR execution time is Tegee (RD.

For the RI interrupt, the interrupt latency is Tyyiuh + Texec (TCAPTURE) + Texec (TF) + Tigabier

écause it has the lowest priority than the timer interrupts.

fhen the third byte is received, the SI generates an interrupt FIFQ_4"Entry and a FIFO_Half flag sets

. #150. Assume that it is the middle priority serial inteprupt and has priorities lower than the TCAPTURE

' #aterrupt but higher than the timer overflow. Assume that the ISR execution time is T oxec (FIFO_Half).
For FIFO_4"Entry interrupt, the interrupt latency is Ty + Texee (TCAPTURE) + Tsatie because

' #has higher priority than timer overflow but it has lower priority that TCAPTURE. The Ty

@0 is not taken into account because if RI is not responded then only FIFO_Half interrupt
urs. Both interrupts RI and FIFO_Half belong to the same SI device.

rpning program when interrupts, the interrupting source service routine takes some time before starting
lef¥icing codes. That time interval is called interrupt latency. It is the sum of the execution time of
Wriority interrupts and the context switching period. If an interrupted routine is having a critical section
bts disabled), the interrupt latency increases by period equal to the interrupts disabled period.

4.6.2 Interrupt Service Deadline

For evety source, the service of its ISR instructions can be kept pending up to a maximum period. This period
defines [the deadline during which the service must be completed. It should not be less than the worst-case
inte@ ok latency. Figure 4.12(a) shows interrupt latency period and deadline for an interrupt.

A 16-bit timer device on overflow raises TF interrupt on transition of counts from OXFFFF to 0x0000. It
has to be responded by executing an ISR for TF befe- the next overflow of the timer occurs, else the counting
period Between 0x0000 after overflow and 0x00U0 after the next-to-next overflow will not be accounted. The
timer;cunts increment every 1 Ls; the interrupt service deadline is 65536 ps.

and the interrupt service deadline is 1 + 15s, else the next frame will be missed.

Exafple 4.15 FIFO_Full interrupt must be executed fast as it has shorter deadline compared with RI and
lugth entry interrupt. If ISR for FIFO_Full interrupt does not execute before the next character at the SI
device,|the character will be missed. If ISR for FIFO_4"™ entry interrupt does not execute fast, it does not
mattelr, because eventually there is a cushion of SI raising the FIFO_Full interrupt. If ISR for RI interrupt does
not exetute fast, it does not matter, because eventually there is a cushion of Sl raising FIFO_4™ entry interrupt
as welllas FIFO_Full interrupt. FIFO_Full interrupt is said to have a service interrupt service deadline. If SI
device {s receiving characters at 64 kbps and in 11-bit UART format, the FIFO_Full interrupt service deadline
is 171.9 ps. FIFO_RI interrupt service deadline is 171.9 ps if SI device does not have the buffer and provisions
for FIFO_Half and FIFO_full interrupts.




Ep—

Context switch time

New - ] Interruptlatency should be such
event ISR | that a deadline of a new event
ISR is not missed

A
Must start at time t4
(a)

Context switch time Context switch time Context switch time

Execution time of a routine

outine Z T Z T T 7 New Interrupt latency = T should
B 3ne Funetion ./ Rz?t’;tm , ~‘event ISR - | P such that a deadline of a new
i N 1) ' — event ISR is not missed T <ty
A A 0 Must start at time t4
Period T -

(b)

Fig. 4.12 (a) Interrupt latency period and deadline for an interrupt (b) Short interrupt|service
routines (ISR) and functions, which run at later instances so that the other ISR ddadlines
are not missed

A good software design principle for multiple interrupt sources is to keep the ISR as short as
Why? This is service the in-between pending interrupts and leave the functions that can be executed
for a later time. When this principle is not adhered to, a specific interrupting source may not be
within the deadline (maximum permissible pending time). Section 4.2.3 described use of interrug
threads, which are the second-level interrupt handlers. Figure 4.12(b) shows a short ISR and functi
run at later instances so that the other ISR deadlines are not missed.

The system therefore has to meet the deadlines set for service of each system device. This can be unilerstood

by the following examples. Consider the example of a video system. When the system is running, twd device-
driver ISRs also run. One driver is for the voice device and the other for the image device. The ISRY ahd the
other system software design for these two device drivers have to maintain synchronization else the|next set
of images and the next set of voice signals will be missed. !

Therefore, the system software designer designs the appropriate ISRs for multiple device interrupts so that
all device interrupt calls are serviced within the stipulated deadlines of each interrupt. The desigt should
provide optimum latencies and set appropriate deadlines for each service routine and functions.

_Each ISR may have a interrupt semoe deadiine when mterrupts An ISR wifh a deadhne must have ‘
Iatency less thanthe deadhne

lines

4mong

4.6.3 Software Over-riding of Hardware Priorities to Meet Service Deé

Which source or source group has higher priority with respect to the others that is first decided
the ISRs that have been assigned higher priority in the user software. If user-assigned priorities afe; equal
then the highest priority is that which is preassigned at the processor internal hardware. The; 8051
internal interrupt mechanism is as follows. There is the interrupt priority (IP) register at 8051 ip :which
there are five priority bits for the five interrupt sources in 8051. Also there are the five inlerrupl—#nable
bits in the IE register. These are secondary-level enable bits of the processor’s service of ISRs. When a




‘Drivers and Interrupts Service Mechanism 217

priority bit at IP is set, the corresponding interrupt source gets a high priority, and if reset, it gets a lower
priotity. The 8051 first selects by polling among the high priority according to the bits at IP register.

There is a need for over-riding the priority order by assigning priorities. The need of reassigning priorities
 hiardware pre-assigned priorities can be understood from the following example.

E ' ’ ple 4.16

EG ignals are input), the software should assign the higher priority to A/D, because SI receives
chrgter every 11/16 ms = 687 pis and A/D every 200 ps, at a rate faster than the SL

Sdftare-assigned priorities can be used to over-ride the hardware priorities. OS provides the functions,
i assign the software priorities to each ISR, IST and task of the real-time system. ’

CLASSIFICATION OF PROCESSORS INTERRUPT SERVICE
MECHANISM FROM CONTEXT-SAVING ANGLE

1.| The 8051 interrupt service mechanism is such that on occurrence of an interrupt service, the processor
pushes the processor registers PCH (program counter higher byte) and PCL (program counter lower
byte) onto the memory stack. The 8051 family processors do not save the context of the program (other
than the absolutely essential PC) and a context can save only by using the specific set of instructions in
the called routine. For example, using push instructions. It speeds up the start of ISR and return from
ISR but at a cost. The onus of context saving is on the programmer in case the context (SP and CPU
registers other than PCL and PCH) is to be modified on service or on function calls during execution of
the remaining ISR instructions.
2.| The 68HC11 interrupt mechanism is such that processor registers save onto the stack whenever
an interrupt service occurs. These are in the o~ '>r of PCL, PCH, IYL, IYH, IXL, IXH, ACCA, ACCB
and CCR. The 68HCI11 thus does automatically save the processor context of the program
without being so instructed in the user program. As context saving takes processor time, it slows a little
the start of ISR and return from the ISR but at the great advantage that the onus of context saving is not
on the programmer and there is no risk in case the context modifies on service or function calls.
3] Certain processor provides for fast context switching two stack frames with each stack frame consisting
of the same number of registers, for example, 16 or 32 registers. The PC, stack-pointer and
link-register define one stack frame. When context switches from one routine to another, only
the pointer to the stack frame changes. The ISR stack frame that is called has the current program
context and the interrupted program context becomes the saved program context. ARMY7 provides such
a mechanism. Certain processors provide for more than two stack frames with each stacking a context.
The OS program also provides for memory blocks, which are used as multiple stack frames for the tasks
(prodesses or threads). This enables multi-threading and multi-tasking.




218 » Embedded

Certain processors provide for saving only the PC. Certain processors provide for saving only the P{ ;
other CPU registers before calling the ISR and context switching. Certain processors provide fgf
context switching by providing internal register frames for the stack or providing sets of local (i
stack for the contexts. Fast context switching reduces the interrupt latencies and enables the meet
each function or routine deadline for service. The operating system provides for multiple stack fragge
enable multitasking and context switching using the multiple stack frames. £l |

Assume that the data transfer is to occur between hard disk system memory. The DMA is used in
When the I/Os are needed for large amount data from a peripheral device to the memory addresses il_i the
system or large amount of data is to be transferred by the I/Os, the interrupt-based mechanism is not sui

device and system or between two systems. A device that facilitates DMA transfer has a processing element
(single purpose processor). The device is called DMAC (DMA Controller). Data transfer occurs effi i¢ntly
between the I/O devices and system memory with the least processor intervention when using DMAC.;The
system address and data buses become unavailable to processor and available to the IO device that interconnects
using DMAC during the data transfer. Figure 4.13 shows the interconnections using the DMAC. It also
the buses and control signals between the processor, memory, DMAC and data-transferring 1/O devicg.

PROCESSOR  From decoder | RD/WR
’ Memory Select cs
b5 -
BIU Ao-A1s AND Do-D;
]
Bus Available .- ™~ Ag-Ass
Acknowledge -
o
Bus Hold -~ > A
Request o | Port DEVICE
1 one SEND
DMA or OR
sot of RECEIVE
Controfter Addresses | CBYS_| FrOM.
(DMAC) " for DMA RAM
operation :
DMAC

DMA Request : Acknowledge

data-transferring 1/0 device

t— From Decoder Port Select

System buses not accessible by processor internal address
and data buses during acknowledge active

Fig. 4.13 The buses and control signals between the processor, memdry, DMA controlle

The DMAC sends a hold request to the CPU and the CPU acknowledges that if the system memory
are free to use. Three modes are usually supported in DMA operations. (i) Single transfer at a time ang then

r and

t

buses




De*t% Drivers and Interrupts Service Mechanism 219

release]IO bus hold on the system bus after each transfer. (ii) Burst transfer at a time and then release of the I0
bus hold on the system bus. A burst may be of a few kilobytes. (iii) Bulk transfer and then release of the 10
bus hold on the system bus only after the transfer is completed.

4.8.1

Use of DMAC

Whenever a DMA request is made to the DMAC for the I/Os, the DMAC is first initialized. It is programmed
for (i) fead or write, (i) mode (bytes, burst or bulk) of DMA transfer, (iii) total number of bytes to be transferred
and (iV) starting memory address. Consider a read operation (external device to memory transfer). DMA
proceefls without the intervention of the CPU, except (i) at the start of DMAC programming and initializing

and (11
reques

at the end. Whenever a DMA request by the external device is made to the DMAC, the CPU is
ed the DMA transfer by DMAC at the start to initiate the DMA and at the end to notify the end of the

48 bytesofdataarereadyandgeneratedaemtemupLTheISRreadsmelor4or8bytesandputﬂ1ese

4 »V memory addresses. Assume that the device generates the interrupt and transfers the 8 bytes. Number of

required will be 2 k/8 = 2048/8 = 256 and ISR has to be run 256 times. A DMA is the better

“ 0 program initializes the DMAC for 2 kb burst mode transfer from a memory address for the /O

tcmal device starting from memory address M,. DMAC loads 2048 in a data count register and

: Q/ll in address register on initialization.

;an external device requesting the DMA, the DMAC sends HOLD request signal to the processor.

&or acknowledges by the HLDA (hold acknowledge) signal that when the system buses are not in use.
D AC transfers the bytes from I/O bus to the memory bus in burst from IO bus to the memory bus

1 lines and keeps track of the data counts in the DC (data count) register. Transfer takes place to

g dses from M, to M; + 2047. DC = 0 after the transfer completes.

AC interrupts the processor so that the processor is notified at the end of DMA transfer

4 ISR can re-initialize the DMAC for the next transfer.

.:j p or a separate DMAC facilitates fast direct byte transfers between memory and I/O devices compared

: ‘ errupt-driven data transfer as that has in-built processing element and uses the system buses as and
fhey are made available by the processor. Designers can use DMAC in sophisticated systems so that

performance improves by separate processing of bulk or burst data transfer from and to the
ipperals. '



‘ Embedded %éms

4.8.2 Use of DMA Channel in Case of Multiple Interrupts in Quick

A good feature of DMA-based data transfer service is very small latency periods compared with data

Succession from the Same Source

simply programs the DMA registers for the command, data count, memory block address and I/O s start

address (Section 4.8.1).
The use of DMA channels for the IO services in place of processor interrupt-driven ISRs provi de:

efficient method when the device has to transfer large amount of data by I/O. This is because a
transfer uses the periods when the system buses are free.

~ 4.9 ~ DEVICE DRIVER PROGRAMMING

A system has number of physical devices (Chapter 3). A device may have multiple functions. Each| dévice

function requires a driver. Examples of multiple functions in a device are as follows.

1.

2.

3.

A common driver or separate drivers for each device function are required. Device drivers
corresponding ISRs are the important routines in most systems. The driver has following features.

. task or function can then drive the device. Once a driver function is available for writing the ¢

A timer device performs timing functions as well as counting functions. It also performs th¢ delay
function and periodic system calls. !

A transceiver device transmits as well as receives It may not be just a repeater. It may also{do the
Jjabber control and collision control. (Jabber control means prevention of continuous stri
unnecessary bytes in case of system fault. Collision control means that it must first sense the |
bus avallablhty then only transmlt )

data.

layer between the application and network for using the network interface card (device).
The driver facilitates the use of a device by executing an ISR: The driver function is usually

application developer does not need to know anything about the mechanism, addresses, registers,



H B
Defv‘ # Drivers and Interrupts Service Mechanism @

nfigures the real time clock (Section 3.8) to let the system clock tick each 10,000 ps and generate the
ystem clock interrupts continuously every 10,000 s to get 100 ticks each second.
Geperic device driver functions in high level language are used in high level language program. The

software application program will seek the device data or write into the device data and what is the
. Platform means the operating system and hardware, which interfaces with the system buses.

re-opeped (re-registered or re-attached).

4.9.1 Writing Physical Device-Driving ISRs in a System

For wiiting the software for driver in assembly, the following points must be clear.

1. |Information about how the device communicates.

2. Information about the three sets of device registers—data registers or buffers, control registers and
" Istatus registers. A device initializes (configures, registers, attaches) by setting the control register bits.
A device closes (resets, de-registers, detaches) by resetting the control register bits. (Example 4.18)

. [Information of other registers and common addresses to a device register.
. IControl register bits control all actions of the device. A control bit can even control which address
corresponds to which data register at an instant. For example, at the instance when the DLAB control
bit is set, the 0x2F8 corresponds to the divisor-latch lower byte (Example 4.19).
5. [Status register bits reflect the flags for status of the device at an instant and change after performing
. factions as per the device driver. A status flag at a status register reflects the present status of device. For
xample, an instance between finishing the transmission of bits from a TRH buffer register and obtaining
e new bits for next transmission, a transmitter empty flag (TDRE) reflects it (Example 4.19).
6. [Either setting of an enable bit (interrupt control flag) is used by the system to initiate a call for executing
; ISR related to the device driver function. ISR executes if: (i) it is enabled (not masked at the system)
. fand (ii) the interrupt system itself is also enabled.
Thd following information must therefore be available when writing a device control and configuring and
driver codes.

1. |Addresses for each register: Physical device hardware and its interfacing circuit fix the addresses for a
physical device and they usually cannot be relocated. The device becomes the owner of these addresses.
t JFor example, IBM PC hardware is designed such that the device addresses are as following:
| a. Timer addresses between 0x0040-5F;

b. Keyboard addresses between 0x00600-6FD, real-time clock (system clock) addresses between
0x0070-7F;

c. Serial COM port 2 addresses between 0x02F8-2F and serial COM port 1 addresses between
0x03F8-3F.

2. [There may be input-buffer register as well as output-buffer register at a common address. This is

iaecause during device write and read instructions at the control bus the different signals RD and WR

)

~




@ Embedded Syl

there is a register SBUF at 8051. It addresses both the output serial buffer and input serial bu:
3. There may be multiple registers at the same address. Refer Example 4.19. This example sh
following. RBR (receiver data buffer register) and TRH (transmitter holding register) are at

latch, which is used for presetting the device baud rate. A control bit is made 1 to write this by
setting the device baud rate and later it is made O for using the same address as RBR and TRH during
the device ‘read’ and ‘write’ instructions, respectively.

4. Purpose of each bit of the control register. '
5. Purpose of each status flag in the status register. Which status bit when set and reflects a device
interrupt, calls to which ISR. .
frqm this

ng the

6. Whether control bits and status flags are at the same address. The processor reads the status
address during the read instructions. The processor writes the control bits at that address d
write instructions.

7. Whether both, control bits and flags coexist in the same register.

8. Whether the status flag, which sets on a device interrupt, auto-resets on executing the ISR or if pn ISR
instruction should reset.

9. Whether control bits need to be changed, reset or set again before return to the interrupted prqgcess.

10. List of actions required by the driver at the data buffers, control registers and status registers.
Section 8.6.1 will describe in detail the device management functions at an OS. The OS usually pgovides
device-related functions so that for the new device also the drivers are written in an identical manner. For e;!ample,
Unix device driver components are: (i) device ISR, (ii) device initialization codes (codes for configuring|device
control registers) and (iii) system initialization codes, which run just after the system resets (at bootstrappi
Microsoft OS Windows provides the Windows driver functions (WDF) and user-mode driver framework (Uj

The device drivers execute according to the device hardware, interrupt service mechanism, OS, ¥
and IO buses. A device driving ISR is designed using the device addresses and three sets of device regigte

by the control bits. The driver ISR initiates and executes on status flag change. A list of actions req ’ by
the driver at the data buffers, control registers and status registers is needed and is prepared before Wi

the interrupt service mechanism changes. The OS usually provides device drivers for the system dedices.

4.9.2 Virtual Device Drivers

Virtual device drivers emulate the device hardware, for example, hard disk and generate software interrupts
similar to physical device drivers. The file and pipe are two examples of virtual devices.

Both virtual devices and physical device drivers have functions for device open, read, write and close.
Consider the analogies of a file device with a physical device. (i) Just as a file needs to be opened tojenable




Drivers and Interrupts Service Mechanism @

ing, registering or attaching it. Setting control bits appropriately does this). (ii) Just as a file is sent a
read call, a device must be sent another interrupt call when its input buffer(s) is to be read. (iii) Just as a file
is sent a write call, a device needs to be sent another interrupt call when its output buffer is to be written.
(iv) Just as a file is sent a close-call a device needs to be sent another interrupt call to disable (close or
deregister or detach) it from the system for further read and write operations.

The concept of virtual (software) device drivers is very important in programming. Examples are as follows.
1.| A memory block can have data buffers in analogy to buffers at an IO device and can be accessed from
a char driver or a block driver. The device is called the char device or the block device when it can
access a character or a block of characters, respectively.

2.} A physical device transceiver (with input—output block buffer) or repeater is equivalent to a virtual
device called loop back device. 1t stores allocated memory blocks using a block device driver and
returns the data back from the memory.

3.| A bounded buffer device in memory can be like a printer buffer. A data stream is sent by one routine (driver)
and read by another routine (driver). Bounded buffer device is a virtual device, usually called pipe device.
4.1 A program can store in a set of memory blocks called RAM disk in the analogous way a file system
does at the hard disk. RAM disk is a device that consists of multiple internal file devices.

The al device is an innovative concept for system software design. Drivers for these are also written
likg fhe physical device drivers. Important devices are char device, block device, loop back device, file
de?i e, pipe, socket and RAM disk. Device configuring is equivalent to creating a file. Device activation
onjthe interrupt is equivalent to opening a file. Device resetting is equivalent to closing a file. Device

Port_ISR_Input does the following:
1.} Step A sets the device control bit for read. Step B is no action till input event.
2.] Steps O to 2 are for reading the input buffer(s) by emptying the buffer and storing the byte(s) in
| memory or using the bytes received as per the system requirement.
3.| Step 3 resets the device receive-buffer ready flag (in status register) and thus prepares the device for
the next read after step 4. In step 4, interrupt flag resets to enable next byte read on next interrupt.
Anjexample for device driver write () function is a driver ISR for handling the port outputs. The ISR does
the following:
1.} Sets the device control bit for write.
2.| Sends into the device output buffer (s) the byte(s) from the memory.
3. Resets the device-transmit buffer-empty flag (in status register) on completion of transmission of the
byte(s) and prepare the device for the next write.
Example 4.18 gives a device driver ISR example using 68HC11 microcontroller port C (68HC11
microgontroller knowledge is presumed here). '




224 Embedded s§+dms

Interrupt
[ T event ,‘:’,ag Step A : Initilization Program
Control Strobe Bit Step B : Device driver Program
and | M Step 0 to 5 by Port A Input
Status |- Ready Bit Service Routine
s | [
< D0-D7 lj,_j Port Input pins >
-
Interrupt Flag Bit
(@
x On Interrupt [
- nterrup!
A | Status and Wait for Port A 0 ! 1 .
~| Control Bits |—B—»| Strobe by event - :::g ﬁve, - :;’:gg;aéiet
for the Port A Flag Port A_F Port Byte
54 1 [2
Reset Activate Wirite Queue Length =  Increment and write
Interrupt | _ 4 Ready | 3 | [(Queue Tail Pointer~ Queue Tail Pointer if Queue
Flag Bit (Queue head Pointer)] Length does not exceed

(b) :

Fig. 4.14 (a) Control and status bits used in the interrupt service routines (ISRs) called by the deévice
drivers and port pins used to interface the data bus (b) Step A for initialization, step B for the

interrupt of the driver and steps 0 to 5 for driver Port_ISR_Input execution. The driver reads a

byte from a port and putsit into a queue that builds in memory on successive inputs to tWe port

of
Example 4.18 '

Device driver read ( ) functlon cal]s an ISR PortC_ISR for handhng the port C mputs in 68HC11 Hol

control and status bits used in the call to the driver. Figure 4.15(c) shows port C as mput and its intgrface
with the data bus. Figure 4.15(d) shows port C as output. Figure 4.15(e) shows step A for initializ
step B of the interrupt and step C for executing PortC_ISR. The ISR reads from the port and inserts t}
into a queue. The latter builds in memory on successive inputs to the port. An external peripheral ac
STRA pin. The peripheral requests a transfer of its byte to port C through the STRA. When STRA |
activates by ‘0", the port C gives an acknowledgment in case STAI (STRA interrupt mask bit) at a ¢cenir
register is not set (STAI is not at ‘1’). STRB pin sends hardware signal for the ready stat
acknowledgement) from the port C to the peripheral. When S7AI is programmed to ‘0’, the periphe :

completes by putting the byte at the port C, the STAF sets (=0). STAF is at status register. STAF J s¢1the
interrupt flag, which sets when the external device completes putting the byte at the port C.



Devic iDrivers and Interrupts Service Mechanism @

registe ifor port C at memory address Oxp007. (iii) On initialization call, STA/ sets to ‘1’ for enabling interrupting
by the peripheral, which connects to port C. STAI is the sixth bit of PIOC (port /O control register). It is at
merhayy address 0xp002.
a8 Hardware Signals A Control I:T’ gﬁf“ Interrupt
| Register Mask Bit)
STRA pnd STRB called L STRA from
Strofend Roady when External Input or Output A Status
Port:C fis Input and peripheral Register STAF
ACK ahd Buffer not Full Bit (Interrupt Flag)
whef Bort C is Output Port — STRAB to peripheral B/
b @ (b) B
e 5007 " Port C input Port COutput >
pins ns.
Port C Port C-
68HC11 when DDRC Register 68HC11 when DDRC Register
: all Bits =0 all Bits = 1
f © (@
4 Initialization | Dovies
. program Program
L f ) ‘ 1
Port C
h Input
i Service
- Routine
¢
e (e)
Fig. 43% (a) Hand-shaking signal to a parallel port (b) Control and status bits used in
' ¥ the system calls by driver functions (c) Port C as input and its interface with data bus
" 1. (d) Port C as output (e) Step A for initialization, step B for system call to the driver and
'}i  step C for driver PortC_ISR '
A

r ISR program for Port C read will execute after the following actions.

i, .
. R.is for control cum status bits.)

i STAF is set ‘0’ then interrupt for call to portC_ISR (port C service routine), otherwise- wait.
“ere is no need to software reset STAF as there is automatic hardware reset of it by 68HC11 as soon
- §8 portC_ISR is called.

Dri ‘ {outine portC_ISR programming is done as follows. Assume the name of pointers and variables are
as follpwing: (i) *portC_Queueback is a pointer that points to a memory address where the byte from
port C hserts into to a queue. (ii) portC_Queuelength is present queue length. (iii) portC_Max QueueSize

yaximum queue length defined for the port C received bytes.



Hi

o

If quasi_bidir bit does not equal to false, write OxFF to port C.

2. Readport C. : :

3. If portC_Queuelength is less than the portC_MaxQueueSize store port bits at the
address defined by *portC_Queuetail.

4. ¥ portC_Queuelength is not equal to portC_MaxQueueSize then increment *portC_Queuetai
to let it now point to next address. When equal then call an exception (error routine) for 4,
port C. . :

4.9.4 Serial Port Drivers in a System
There is IEEE standard called POSIX (portable operating system interface) standard. Portability of the

UART device UART 16550, which includes the 16 byte FIFO input and output buffer is used. Exam

drivers in different systems is essential. In a PC with 80x86 processor an UART 8250 or a new ge%eration

UART

le 4.19

gives all three sets of the registers (data, control and status) for a serial-line UART device in a PC. All PCs

have this device.

Example 4.19 | ‘;

A serial-line device 8250 or 16550 in a 80x86-based IBM PC has the addresses of device regi .

follows. These addresses are fixed by hardware configuration of the UART port interface circuit

PC system employing the 80x86 processor. They are from 0x2F8 to Ox2FE at COM2 port in a ¥ Ja

0x3F8 to 0x3FE at COM 1 port. Consider COM 2.

1. Two /O data buffer registers (RBR for receiving and TRH for transmitting) are at a common -' e

0x2F8—

(a) Provided a control bit at address 0x2FB is 0, (i) during read from the address, the p

accesses from the RBR or (ii) during write to the address, processor accesses the TRH.
(b) Provided a control bit at address 0x2FB is 1, data of two bytes of divisor latch are at §
addresses, 0x2F8 (LSB) and 0x2F9 (MSB). Divisor latch holds a 16-bit value for divid
system clock. This then selects the rate of serial transmission of bits at the serial line. {}
writing a device driver, remember that a bit in another register (control register) chary
0x2F8 access from access to the IO register to the lower byte register at divisor latch rej

in registers as follows—

(a) IER (interrupt-enabling register). It enables the device interrupts.

(b) LCR (line control register). It defines how and how many bits will be on the line.

(c) MCR (modem control register). It defines how the modem handshakes and
communicates.

3. Three status registers of the device are also at three addresses 0x2FA, 0x2FD and Ox2FE ]

used during read from these. These are as follows—

(a) IR (interrupt identification register) for flags at 0x2FA. A flag sets on a device inte bt

resets at the servicing of corresponding device interrupt.

(b) LSR at Ox2FD. It is for reading line status the number of bits that will be present on thé}

(c) MSR at Ox2FE. It specifies the modem status bits during handshakes and communicat]

Assume that device has been given identity number 5. It is also a file descriptor for the deicE

points to description parameters of the device.

T

i le
. e

2. Three control registess are at three distinct addresses 0x2FA, 0x2FB and 0x2FC. These are for j




Devkd 1 ivers and interrupts Service Mechanism

A serial device high-level driver fanction, open (5, baudrate) will configure and initialize the
device. It sets the reset flag in IIR. The device initializes by unmasking the device interrupts and
writing the control bits for clock divisor latch at the specified address. Divisor latch bits will
. define the baud rate configured for the device. re E g
) A serial device high-level driver function write (5, lengthl, memTxaddress) will send bytes into
TRH one by one and the device transmits total bytes = lengthl from addresses memTxAddress
¢ to memTxAddress +lengthl — Lo oo o st e - ,
H4c) A serial device high-level driver function read (5, len2, memRxaddress) will receive bytes
throughRBRandﬁxedevicemeivesﬁlebytcsonebynneandmnumbetofbytésmpm

in the buffer at memory address from memRxaddress to memRxaddress + len2 1

) A serial device high-level driver function. close () will close the device. It can then be,
reused only after opening it by open (). The device closes by masking the device interrupts.

4.9.3, Device Drivers for Internal Programmable Timing Devices

Generally, there is at least one hardware timer T as an internal device in any systems needing functions related
to timprs. Using the time-outs (ticks) from T (using overflow interrupts) several needed software timers
(SWTS$) as can also be driven.

mple 4.20 s i B
hardware timer time-outs every 2'° (16384) counts and let k give input at every 2 is.
that an SWT is to be programmed to tick every 31 x 32,768 ps = h
it after swt counts swicnt becomes equal to mumTicks (preset number of ticks), The SWT is
tialized to swicnt equals O and on every T overflow an ISR increments swicnt and when -
equals 31 then swrcnt is reset to 0 after generating software interrupt by an SWl instruction, -

-ISR then executes to perform required actions on SWT interrupt.

+ed

Tither device driver function call an ISR. The ISR programming needs an understanding of the programming
of eadh bit of timer control register(s) and status register(s). An important step is programming of each bit of
one of two control registers present and the use of status register. The programmer must also take into account
the following. (i) Instead of interrupt enable, a device may have a mask bit. Mask bit means interrupt disables
on set and enables on reset. Its actions are opposite to that of the enable bit. The programmer must also
remember that a certain interrupt cannot disable (cannot mask, NMI). These enable or mask bits are the
secondary bits. There is an overall interrupt system enable bit, which is like a master key (primary-level bit)
for al} maskable interrupt sources. The driver must set that bit also.

Step I: Write in a register that holds the timer maximum count value, the number of count inputs, numTicks
e SWT.

$tep II: Write in status register the timer status flag(s) equal to reset [in case the device does not reset
flag(q) automatically on a read of the status flag(s)].

Step III: Write each bit present in the control register(s). Write interrupt secondary- and primary-level enable
bits ehmals true in control register, write other bits according to their uses. It is essential to write the device enable
bit tollet the device work. Definition of each bit in the mode register, if present is also essential.

Agsume that a free running counter (FRC) is used as a timing device. Device-driver ISR programming
steps| require use of 68HC11 RTC described in Section 3.8. Consider following example. (68HC11

for

|
i



228

i
microcontroller knowledge is presumed here). The example gives the details of bits that are initializied for
using FRC device of 68HC11.

Example 4.21

1. Step I Define the output compare register(s) to hold count instance(s) of the FRC when OC

sets and OC interrupt(s) occurr(s). : :

2. Step II: Flag(s) on its read from status register must be reset in case the device does reset automati

The flags that may be present are the FRC overflow status flag, OC flag(s), ICAP_F flag(s)]

flag and SWT flag(s). These are to be reset on a read of the status register.

3. Step III: Define control register(s) bits. Here, definition for each bit present is essential. The bits

-be as follows. Prescaling bits for count input clock, overflow interrupt enable bit, RTC inte

enable, OC interrupt enable bit(s), OC enable bit(s), OC output level bit(s), ICAP enable bit(s),| |

ICAP input edge bit, ICAP input bit(s), ICAP interrupt(s) enable bit, SWT enable bits -
and SWT interrupts enable bit(s).

4. Step IV: Also enable the primary level interrupt enable bit, if already not enabled.

1!
dgo
gal

i
Ily.
TC

4.9.6 Linux Internals as Device Drivers and Network Functions

Drivers for port, keypad, display, timer and network devices (Sections 3.3, 3.6 and 3.9) are most co only
used in the systems. Drivers for PCS (physical coding sublayer) and PMA (physical media attachm t) are
required in media devices for most voice and video systems. It becomes impractical for a programmer to{write
the codes for each function of device. For commonly used devices, a programmer most often relies on dfivers
that are readily available in the thoroughly tested and debugged operating system (Refer to Chapters 9 ahd 10
for uCOS II, VxWorks OS, Windows CE, OSEK and Real Time Linux). :
The Linux operating system is a tested and debugged operating system and is used throughout. It thas a
large number of drivers (Table 4.2) that are, moreover, in the public domain. Public domain means| non-
proprietary and usable by anyone. A programmer may therefore choose Linux drivers when the em ¥dded
system being designed has the devices that have the drivers available in Linux (refer http://www.linuxdoclorg).

Linux has internal functions called Internals. Internals exist for device drivers and network-managgment
functions. Examples of useful Linux drivers for the embedded system are given in Table 4.2.

Linux internal functions exist for sockets, handling of socket buffers, firewalls, network protocols Ke.g.,
NFS, IP, IPv6 and ethernet) and bridges. These are in the ner directory. They work separately as drivers and
also form a part of the network management function of the OS. (The reader can refer a standard textbodk for
bit-wise meaning of UDP, PPP and SLIP and for socket functions, firewall and network protocols. For ex ple,
refer Internet and Web Technologies from Tata McGraw-Hill, 2002 for bit-wise description of PPP, $LIP,
TCP, IP, ethernet and other protocols). ‘

Device drivers play a key role in most embedded system as these provide software layers betweenjthe
application and devices. Drivers control almost all devices except the memory devices and the processq
a system. Linux device drivers are also used popularly because they are tested and debugged and are in| )
public domain. The Linux OS has internals and a large number of readily available device drivers forjthy

most common physical and virtual devices and has the functions for the network sockets and prot



De

iDrivers and Interrupts Service Mechanism

Table 4.2 Useful Linux Device Drivers

DnvA' type Explanation

char Drivers for char devices. A char device is a device for handling a stream of characters (bytes).

block Drivers for block devices. A block device is a device that handles a block or part of a block of data.
For example, 1 kB of data handled at a time. (Note: Unix block driver does not facilitate use of a part
of the block during read or write.)

net Drivers for network devices. A net device is a device that handles network interface device (card or
adapter) using a line protocol, for example, tty or PPP or SLIP.

input| Drivers for the standard input devices. An input device is a device that handles inputs from a device,
for example, keyboard.

medig Drivers for the voice and video input devices. Examples are video-frame grabber device, teletext
device, radio-device (actually a streaming voice, music or speech device).

vided Drivers for the standard video output devices. A video device is a device that handles the frame
buffer from the system to other systems as a char device does or a UDP network packet sending
device does.

soung Drivers for the standard audio devices. A sound device is a device that handles audio in a standard
format.

systeln Platform-specific drivers. Recently, system processor-specific drivers have also become available in
this operating system. Examples are drivers for an ARM processor-based system.

g following is a summary of the important points that were discussed in this chapter.

terrupt means event, which invites attention of the processor for the action of hardware. Event can be a hardware

¢ software event. In response to the interrupt, running routine or program interrupts and a service routine executes.

W en a device or port is ready, a device or port generates an interrupt or when it completes the assigned action,

.generates an interrupt. These interrupts are called hardware interrupts. When software run-time exception

ondition is detected, either processor hardware or a software instruction SW1 generates an interrupt for exception.

i SWI instruction is INT n in 80x86.

Pevice, run-time error and software instruction-related interrupts are studied. Various possible sources of the

pftware and hardware interrupts are listed.

Nevice driver functions execute software-interrupt routines for servicing the device, and drive a peripheral or

~ fgternal device by create, open, read, write, close or other device function, A device is configured and initialized

1 by using the control bits at its control register(s). The device driver executes on hardware or sofiware interrupts as
ber set flags in status register(s).

ysical device drivers, virtual device drivers and ISRs for the software instruction, software-defined condition

’d error condition are used to program the system.

Ryery system has an interrupt service mechanism.

e leamt device initialization, driver ISR and function coding for the parallel ports, serial-line UART and internal

iming device in 68HC11.

firtual devices like char device, block device or file device, RAM disk, socket, pipe, loop back device are used

furing programming. These are treated in a way analogous to the physical devices.

ere are the device interrupts as well as other interrupt sources, driver functions and ISRs for which must be

Mritten by the programmer. A list of the various possible sources of software and hardware interrupts is given. A




: : Embedded

software instruction or a condition during running-related or run-time error-related or device driver ‘=

interrupts are important in the systems. -
* Interrupt system and individual device interrupt enabling and disabling, interrupt vectors, interrupt pending regid
and status registers, non-maskable, maskable, non-maskable only when so defined within a few clock cyclds
#  Each running program has a context at each running code instance. Context means a CPU state (PC, stack pols eli((s),
tegisters and program state (variables that should not be modified by another routine). The context must be{sdved
on.a call to another ISR or task or routine. It must be done before processor switching to another context. P eissor
switches to another context by retrieving called program context, Certain processors like those from the{ ARM
family provide for fast context switching. These have the internal stack frames or sets of local registers for| the

e Programming should be such that interrupt latencies are made as short as possible. This helps in mee
" deadlines for each interrupt service. Use of interrupt service threads (slow-level ISRs initiated by SWIs) hel
~having the main first-level ISR codes short. The use of a DMA channel facilitates the small interrupt

periods of an IO interrupt source requiring bulk or burst data transfers. ']

o There may be simultaneous service démands from multiple sources. Assignment of software priorities aml

multiple sources of interrupts keeping in view the available hardware priorities is essential. 1

o Linux has a large number of device drivers, which are open-source. i

. Keywords and their Definitions

Context : PC, stack pointer as well as the program status word and processor réf ¥

for a foreground program or ISR or task. It can also include memori L
addresses allotted to the program or routine. it
Saving the foreground program [interrupted routine (or function)] #gng
and retrieving or loading the new context of the called routine. TH
taken in context switching is included in the interrupt latency period.?|

o : A period-during which service to an interrupt must start. !
Device attaching (adding) ~ :  Configuring a device and enabling the use of its driver. 1

Device detaching (removing) Disabling the use of a device driver by the system. o
Device driver ISR codes’ :* Codes for read and write or other operations at the device addres: i after

‘ reading device status on interrupt. ‘ ks I

Device initialization codes : Codes for programming the control register of a device. 0

“Device opening 't Resetting the device control bits and preparing it for the use of its drir
Device closing "t Resetting the device control bits and its next time use is then possible difly by

opening it again. i B
Exception P An interrupt on detection of a run-time event during computatibhs or
communication. Setting of a condition that may be defined by the progrihnier.

Exception handler :  Programmer defines the exception handler ISR also for handling servige

~ that condition. Error conditions are handled by the exception ha -, "

: Exception handler is called on executing an SWI instruction.”

Foreground program : '~ Foregtound progran is one that is executed when no interrupt call i€
“Hardware-assigned Priority -+ Priority assigned by the processor itself to service a source when
! : B interrupts need the interrupt service.



$# Drivers and Interrupts Service Mechanism 231

jad arelaterrupt ) : Interrupt of devices or ports at the system.

: A timer present in the system as hardware and which gets inputs fmm the
intemnal clock with the processor. A device-driver progtam programs it like
any other physical device..

CPU on interrupt event may initiate a further action by vectonng to a vector
address and calling an ISR or else it continues with the current process (task)
if the interrupt is disabled or masked.
It enables (unmasks) the interrupts from a source(s)... .
A register bit for a Boolean variable that sets to reflect aneedforcxecutmg
an ISR. It resets when correspondmg ISR starts executing.
A period for waiting for service after a service demand is raised (soume status
flag sets).
When this bit is reset (= false) the request for initiation of mtemxpt servxce is
_ responded, otherwise it is not responded.
A register to show the interrupt sources or source groups from various dewces
that are pendmg for service by executing the corresponding ISRs. It is a.“read
and write’ register. A bit auto resets in it when the corresponding interrupt
service starts. A user instruction. can also reset a bit in the register.
A mechanism for interrupt-driven service of the devices and ports. It saves
the processor waiting time, because it lets the processor process the multiple
devices and virtual devices. The mechanism also sets the priorities and provides
for enabling and disabling the services.
A program that is executed on interrupt after saving the necessary parameters
called context onto the stack so that the same can be retrieved on return from
the routine last instruction. An ISR is also a device driver ISR when a high
level language device driver function executes SWI and it services a device-
interrupt. An ISR is also a trap when it services a software error or other
condition-related interrupts with error detected by processor hardware. An
. ISR is also called exception handler on exception, which is tk:m when it
B services software run-time condition detection and the condition is detected
in the software routine. It is also called signal handier. When a i nai tig
; is called in a program. Each signal or exception throwing ecut
i} an SWI, which initiates an ISR.
Interrupt vector : A memory address where there are bytes to provide the corresponding ISR
address. The system has the specific vector addresses assigned by the hardware
. for each interrupting source for each internal device.
Indérrupt vector table : A table for the interrupt vectors in the memory. The table facilitates the service
; of the multiple interrupting sources or source-groups for each internal device.
i po In each row for an interrupt vector address, there are bytes to provide the
N corresponding interrupt service routine address.
| : AnopensouronSIthasalargenumberofdevxcedrwersmdnetwork
management functions.
device drivers : Device drivers taken from the Linux source. ‘
le interrupt source : A source, service routine call for which can be disabled or service of which
: masked.
New-maskable interrupt source : A source, which cannot be disabled and which is used for the highest priority
interrupt service cases, like RAM parity error.
fling : A method to find the status of a peripheral or device. It is also a: method by
; which at the end of an instruction or at the end of an ISR, the pending interrupts
% are searched by the processor from the status register or interrupt pending
register to service the one with the highest priority.




@ ' Embedded Syltoms

e

Primary-level enable bit : A bit, which enables or disables any service on interrupt by all the rﬁdble
sources. It helps in executing critical section codes and preventing sedtick to
any other maskable source during disabling of service. 1

Secondary-level mask bit : It disables service from an individual source or source group. :

Signal : Signal is function to initiate software-interrupt on an instruction tékadll a

Software-assigned priority : (Hardware signal is different.) A priority for a source or source gro

Software Interrupt : An interrupt by an error condition trap or illegal opcode or an SWI instr

software-initiated ISR. An exception or trap may also be called a K}
Signal is called by SWI instruction in ARM and INT n in 80x86.

defined at a register called interrupt priority register. When several in ;
priorities.

(or INT n instruction 80x86) in a routine or ISR or software timer or

Stack frame : A set of registers or a memory block that stores the context for a pro or
ISR. i

Status register : A read only register for a device to set a flag on arising of an interrupt. 4 user
instruction can also reset a bit in it. If a device has a number of sou the

When it is read by a processor instruction, the flag resets. o

Trap : An interrupt on detection by hardware a run-time computational of tiler

event. The processor may also signal an exception on the rap. Exampl of a
trap is division by zero in 80x86. o

Virtual device : A device, which emulates the physical device and drives by virtual £vice

Worst-case latency : Maximum interrupt latency found in the worst possible case.

drivers provided in an operating system. Examples are file, pipe, soc gtc.

Review Questions

What are the disadvantages and advantages of busy and wait transfer mode for the /O devices?
What are the advantages and disadvantages of interrupt-driven data transfer?

What are the advantages of DMA based or peripheral-transcation-server based data transfer over the interrupt-
driven data transfer? ‘T
How is the vector address used for an interrupt source?

Interrupt vector addresses are prefixed in the interrupt mechanism for the known internal peripheraks in a
microcontroller. How are the vector addresses assigned for exceptions and user-defined interrupts?

Interrupt mechanism in each processor differs from a processor family to another. Explain, why the device drivers
are processor-sensitive programs.

How do you intialize and configure a device? Take an example of serial-line driver at COM port of PC. :
How is a file at the memory act handled as a device? i
What are the advantages of RAM disk?

Make a list of Linux internal net directory functions for sockets, handling of socket buffers, firewalls, ndtwork
protocols (e.g., NFS, IP, IPv6 and ethernet) and bridges. Why are these device drivers assigned in a separate
directory of network management function of Linux OS. L

. Define context, interrupt latency and interrupt service deadline.
. Why is the context switching in an embedded processor faster than saving the pointers and variables on thel stack

using a stack pointer? How does the context switching time reduce in processor architectures for embedded systems?

}
|
|
]
i



22.
23.

24,
25,

i Drivers and Interrupts Service Mechanism 233

ow is the context switching handled in ARM7?

MA helps in reducing the processor load by providing direct access for the I0s. How does it help in faster task
ecution in a multi-tasking system by the reduced interrupt service latencies?

at do you mean by throwing an exception? How is the exception condition during execution of a function
utine) handled?

ow do the device driver functions and ISRs differ? How do the ISR calls differ in 80x86 and 80517

ow do you assign service priority to the multiple device drivers of a system? How do you assign priorities to the
mer devices and ADC device?

fhat are the uses of hardware-assigned priorities in an interrupt service mechanism?

/hat are the uses of software-assigned priorities in an interrupt service mechanism?

w is break point interrupt important for debugging embedded software?

at do you mean by POSIX function?

Practice Exercises

ow do you write device driver? List the steps involved in writing a device driver.

earch web and design a table to show features in device driver modules of embedded Linux OS. Explain with
xamples each a char device, block device and block device configurable as char device. UART is a char device.
y is it a char device?

ive software-related interrupt examples. What are the interrupts in 8086, which generate software error?

how the state machine-generated states in a key marked as number 4 in the mobile device. How will you use the
W1 instruction to generate an SMS message in a mobile phone having a T9 keypad?



Programming Concepts
and Embedded
Programming in C,

C++ and Java

Let us recapitulate the following points covered in the

previous chapters.

e ®

System hardware consists of processor(s), memory (ROM
and RAM), I/O port, timing and external devices.

Programming is required for computational tasks.

Programming is required for the ISRs called on software
interrupts from traps, exceptions, errors, signals and
interrupts from physical and virtual devices.

OS software is required for using any device in a simple
or sophisticated application(s).

Certain software instructions are required according to
the given processor, memory and device hardware and as
per the system interrupt servicing mechanism.

Programming is the most essential part of any embedded
system design. Except for certain processor and memory-
sensitive instructions where program codes may be written
[ in assembly, most of the codes are written in a high level-

language.




e
E
A
ES
N
A
G

ce ey

G R R~ 0 RS ® o

0 ~r
b b o

-

For an in-depth learning of the programming language, a reader should refer to the
standard textbooks and do required practice exercises. We will learn basics of
programming the functions (methods) and concepts of object-oriented programming
with reference to building software for the embedded systems. OS concepts, we will
learn later.
The following are the topics that will be discussed in this chapter:
1. Programming in the assembly language vs. high-level language and the
powerful features of C for embedded systems.
2. Program elements: Preprocessor directives and the header files, include files
and source files that are used in a program for an application.
Program elements: Macros and functions and their uses in a C program.
4. Program elements: Data types, pointers, data structures, arrays, queues,
stacks, lists and trees, modifiers, conditional statements and loops.
5. Program elements: Function calls, multiple functions, function pointers,
function queues and service-routine queues.
6. Object-oriented Programming concepts, embedded programming in C/C++,
Java and J2ME
Program models for building the software will be dealt with in Chapter 6. Concepts
of the processes, tasks, threads and the concepts of interprocess synchronization will
be covered in Chapter 7 and of RTOSes in Chapter 8. Popular RTOSes are described
in Chapters 9 and 10. .

“w

-51 ~ SOFTWARE PROGRAMMING IN ASSEMBLY LANG-
UAGE (ALP) AND IN HIGH-LEVEL LANGUAGE ‘C’

5.1.1 Assembly Language Programming

Assembly language coding of an application has the following advantages.

1. The assembly codes are sensitive to the processor, memory, ports and devices
hardware. It gives a precise control of the processor internal devices and
complete use of the processor-specific features in its instruction set and its
addressing modes.

2. The machine codes are compact, processor- and memory-sensitive. This is
because the codes for declaring the conditions, rules and data type do not
exist. The system thus needs a smaller memory. Excess memory needed does
not depend on the programmer data type selection and rule declarations. The
program is also not compiler specific and library functions dependent.

3. Device driver codes may need only a few assembly instructions. For example,
consider a small embedded system, a timer device in a microwave oven or an



Embedded Sﬁt’ms

automatic washing machine or an automatic chocolate-vending machine. Assembly codes for thése can
be compact and precise, and are conveniently written. f

4. We use bottom-up-design approach. It is an approach in which programming is first done for the sub-
modules of the specific and distinct sets of actions. An example of the modules for specific [sets of
actions is a program for a software timer, RTCSWT:: run (real-time clock software timer fynction
run). Programs for delay, counting, finding time intervals and many applications can be writter. Then
the final program is designed. The approach to this way of designing a program is to first cdde the

basic functional modules and then use these to build a bigger module.

5.1.2 High-level Language Programming

High-level language coding of source files in C or C++ or Java has great advantages and therefore most

programming is in high-level language. Basic advantages are as follows:

1. High-level program development cycle is short even for complex systems because of the followings:
use of routines (called functions in C/C++ and methods in Java), standard library functions, juse of
modular programming approach, top-down design or object-oriented design approach. Application
programs are structured to ensure that the software is based on sound software engineering prigciples

and programmed with the given OS, file systems, device and network drivers.

(a)
(b)

©)

(d

O]

A function defines a method of operation, and sets of statements and commands are run when that
function is called.

Library functions are standard functions, which are readily available to a programmer
codes for them are not defined by programmer. For example, square root method of o
The use of the standard library function, square root ( ), saves the programmer time for ding.
New sets of library functions exist in an embedded system-specific C or C++ compiler. Exe plary
library functions are delay ( ), wait ( ) and sleep ( ).

Identical devices such as serial-line device (UART) are used in a number of embedded systems.
programming these functions in each system will mean the repetitive and redundant coding fqr each
device. It is better to use the device drivers in high-level language, which use the functions specified in
the OS. The programmer simply specifies device ID and some of the function arguments pass
device driver function when needed and use it at another instance of the device use.
Modular programming approach is an approach in which the building blocks are reusable
components. A module is built by software components. The components are built by a|set of
functions. Consider an analogy to an IC (integrated circuit). Just as an IC has several circuits in
into one, similarly a module building block may call several functions and library functions. A
modaule is then well tested for a well-defined goal and for the well-defined data input and outputs. It
should have only one calling method. There should be one return point from it. It should nof affect
any data other than the one it operates; this means that there should be data encapsulation. It must
return (report) error conditions encountered during its execution.
Top-down design is another programming approach in which the main program is first des gned,
then its modules, sub-modules, and finally, the functions.

2. High-level program facilitates data type declarations: Data type declarations provide programming ease.
For example, there are four types of integers, int, unsigned int, short and long. When dealing with
positive only values, we declare a variable as unsigned int. For example, numTicks (number of ticks to a
clock) has to be unsigned. We need a signed integer, int (32 bits) in arithmetical calculations. An i teger
can also be declared as data type, short (16 bits) or long (64 bits). To manipulate the text and stringp for a
character, another data type is char. Each data type is an abstraction for the methods, which a per-
mitted for using, manipulating, representing and for defining a set of permissible operations on that data.




Prc&;#-nming Concepts and Embedded Programming in C, C++ and Java 237

3. |High-level program facilitates ‘type checking’ making the program less prone to error. For example,
type checking does not permit subtraction, multiplication and division on the char data types. It permits
‘plus’ operator to be used for concatenation when using char data types and lets the ‘plus’ operator to
be used for arithmetic addition when using int, unsigned int, short and long type of data. (Concatenation
operation can be understood as follows: the micro plus controller concatenates into the microcontroller,
where micro is an array of char values and controller is another array of char values.)

4.| High-level program facilitates use of control structures (€.g., while, do-while, break and for) and conditional
statements (e.g., if, if-else, else-if and switch-case) to specify the program flow by simple statements.
5.| High-level program has portability of non-processor-specific codes. Therefore, when the hardware
changes, only the modules for the ISRs of device drivers and device management, initialization and
program-locator modules and initial boot-up record data need modifications.

itional advantages of C as a high-level languages are as follows. It is a language between low-(assembly)
gh-level languages. Inserting the assembly language codes in-between is called in-line assembly. A
ardware control is thus also feasible by in-line assembly, and the complex part of the program can be

evel language programming makes the program development cycle short, enables use of the modular
ing approach and allows us to follow sound software engineering principles. It facilitates the
development with top-down design approaches. Embedded system programmers have since long
red C for the following reasons: (i) The feature of embedding assembly codes using in-line assembly.
Readily available modules in C compilers for the embedded system and library codes that can directly
into the system-programmer codes. '

C PROGRAM ELEMENTS: HEADER AND SOURCE FILES
AND PREPROCESSOR DIRECTIVES

A G program has following structural elements.
‘1{ Preprocessor declarations, definitions and statements.
.2} Main function.
3| Functions, exceptions and ISRs.
A G program has the following preprocessor structural elements.
Include directive for the file inclusion.
Definitions for preprocessor global variables (global means throughout the program module).
Definitions of constants.
Declarations for global data type, type declaration and data structures, macros and functions.
C program elements, header and source files and preprocessor directives are explained in the following
subsdctions.

B W N =

5.2/1 Include Directive for the Inclusion of Files

Any C program first includes the header and source files that are readily available. A case study of sending a
stri of bytes through a network driver card using a TCP/IP protocol is given in Example 11.3. Its C
progam starts with the codes given in Example 5.1. The purpose of each included file is mentioned in the
co nts within the /* and */ symbols as per the practice in C.



, Embedded S)#ems

Example 5.1 |

H I W H KR

Configuration’. It provides the frame format protocol (SLIP or PPP or Ethernet) description,
description/make, address at the system, IP address (s) of the node (s) that drive the card for
transmitting or receiving from the network. */

per the network layer-protocols used for driving streams to the network. */

include “vxWorks:.h” /* Include VxWorks functions*/

include “semLib.h” /* Include Semaphore functions Library */
include “taskLib.h” /* Include multitasking functions Library */
include “msgQLib.h” /* Include Message Queue functions Library */ £ I
include *“fioLib.h” /* Include File-Device Input-Output functions Library */ S
include “sysLib.c” /*Include system library for system functions */ »
include “netDrvConfig.txt” /* Include a text file that provides the ‘Network Dtiver

include “prctlHandlers.c” /* Include file for the codes for handling and actions as

Include is a preprocessor directive to include the contents (codes or data) of a file. The files that ¢an be

included are given next. Inclusion of all files and specific header files has to be as per the requirements.
1.

Al

Including code files: These are the files for the codes already available. For example, # include
‘prctiHandlers.c’.
Including constant data files: These are the files for the codes and may have the extension *.
Including strings data files: These are the files for the strings and may have the extension ‘.stri
“.str.” or “.txt. For example, # include ‘netDrvConfig.txt’
Including initial data files: There are files for the mltla] or default data for the shadow ROM f the
embedded system. The boot-up program is copied later into the RAM and may have the exténsion
*.init’. On the other hand, RAM data files have the extension, .data’.
Including basic variable files: These are the files for the local or global static variables that are gtored
in the RAM because they do not possess the initial (default) values. The static means that thefe is a
common not more than one instance of that variable address and it has a static memory alloca:jijne For
example, system has is only one real-time clock, and therefore only there is one instance of addfesses
of the clock variables. The basic variables of the clock are stored in the file with the extension |.bss’.
. Including header files: It is a preprocessor directive, which includes the contents (codes or datd) of a
set of source files. These are the files of a specific module. A header file has the extensio
Examples are as follows. The string manipulation functions are needed in a program using sfrif

square root, sin, cos, tan, atan and so on are needed in programs using mathematical expr
These become available by including a header file, called ‘math.h’ The preprocessor directives
‘# include <string.h>’ and ‘# include <math.h>’ for including standard library functions for the
and mathematical operations in the program.

SO included are the header ﬁles for the codes in assembly, and for the I/O operatlons (conio.h),

the file functions for opening, closing, read and write operations on the keyboard and video m
So when including stdio.h, it will make the code too big. !

What is the difference between inclusion of a header file, and text file or data file or constant file? Comsider
the inclusion of netDrvConfig.txt.txt and math.h. (i) The header files are well-tested and debugged moglules.




Pr$g ‘ mming Concepts and Embedded Programming in C, C++ and Java

(i) header files provide access to standard libraries. (iii) The header file can include several text files or
C filed. (iv) A text file is a description of the text that contain specific information.

5.2.2 Source Files

Sourcé files are program files for the functions of application software. The source files need to be compiled.
A soufce file will also possess the preprocessor directives of the application and have the first function from
wherelthe processing will start. This function is called main function. Its codes start with void main (). The
main galls other functions. A source file holds the codes.

5.2.3 Configuration Files

Configuration files are the files for configuration of the system. Device configuration codes can be put in a
file of basic variables and included when needed. If these codes are in the file “serialLine_cfg.h” then #
include ‘serialLine_cfg.h’ will be the preprocessor directive. Consider another example. ‘# include ‘os_cfg.h’;
this will include os_cfg header file.

5.2.4 Preprocessor Directives

Pre;ir(-cessor constants, variables and inclusion of configuration files, text files, header files and library functions
are pspd in embedded C programs. A preprocessor directive starts with a sharp (hash) sign. These commands
are for the following directives to the compiler for processing.

1] Preprocessor global variables: For example, in a program the IntrDisable, IntrPortAEnable,
IntrPortADisable, STAF and STAI may be the global variables for disabling interrupts, enabling port
A, disabling port A, status flag, status flag for interrupt, respectively. Now ‘# define volatile boolean
IntrEnable’ is a preprocessor directive. It means it is a directive before processing to consider IntrEnable
a global variable of boolean data type and is volatile. (Volatile is a directive to the compiler not to take
this variable into account while compacting and optimizing the codes.)

2| Preprocessor constants: ‘# define false 0" is a preprocessor directive in an example. It means itis a
directive before processing to assume ‘false’ as 0. The directive ‘define’ is for allocating pointer
values in the program. Consider # define portA (volatile unsigned char *) 0x1000 and # define PIOC
(volatile unsigned char *) 0x1001. 0x1000 and 0x1000 are the addresses fixed for port A (port A
register) and PIOC (port input—output control register) are the constants defined for the 68HC11
register addresses.

Strings can also be defined. Strings are the constants, for example, those used for an initial display on the
T;l a mobile system. For example, # define welcome ‘Welcome To ABC Telecom’.

PROGRAM ELEMENTS: MACROS AND FUNCTIONS

e 5.1 lists these elements and gives their uses.

Preprocessor Macros: A macro is a collection of codes that is defined in a C program by a name. It differs
from la function in the sense that once a macro is defined by a name, the compiler puts the corresponding
COdi; for it at every place where that macro name appears. For example, consider the macros,

‘enable_Maskable_Intr ()’ and ‘disable_Maskable_Intr ( )’. (The pair of brackets in the macro is optional. If



it is present, it improves readability as it distinguishes a macro from a constant.) Whenever the

enable_Maskable_Intr appears, the compiler places the codes designed for it.

Table 5.1 Uses of the Various Sets of Instructions as the Program Elements

Embedded Sgiﬂﬁns

embedded systems due to memory constraints.
(Stack grows after each recursive call and it may
choke the memory space availability.)

Program Uses Saves context on the stack
Element before its start and
retrieves them on return
Macro Executes a named small collection of codes. No
Function  Executes a named set of codes with values passed by Yes
the calling program through its arguments. Also
returns a data object when it is not declared as void.
It has the context-saving and retrieving overheads.
Main Declarations of functions and data types, typedef and No
Sunction either: (i) executes a named set of codes, calls a set of
functions and calls on the interrupts the ISRs or
(ii) starts OS Kernel.
Reentrant  Refer Sections 5.4.6. Yes
Junction
Interrupt  Declarations of functions and data types, typedef and Yes
service executes a named set of codes. Must be short so that
routine other sources of interrupts are also serviced within the
(ISR) deadlines. Must be a re-entrant routine. Not allowed
to wait for interprocess messages (semaphore or
mailbox or queue messages) but allowed to send the
interprocess messages for the ISTs or tasks, (
Process or Refer Sections 7.1-7.3. Must either be a reentrant Yes Nong¢ :
task or routine or must have a solution to the shared data
thread problem.
Recursive A function that calls jtself. It must be a reentrant Yes Yes
Sfunction function also. Most often its use is avoided in

Macros, called test macros or test vectors are also designed during programming and are used for deb

How does a macro differ from a function?

1. The codes for a function are compiled once only. On calling that function, the system has to
context, and on return restore the context. Further, a function may return nothing (void dec
case) or return a Boolean value, or an integer or any primitive or reference type of data. (Pri
means similar to an integer or character. Reference type means similar to an array or struc
example, the enable_PortA_Intr () and disable_PortA_Intr ( ) are the function calls. (The brack

now not optional.)




pmﬁ,,ﬁy.ming Concepts and Embedded Programming in C, C++ and Java 241

2. | The codes for macro are compiled in every function wherever that macro name is used, as the compiler,
before compilation, puts the codes at the places whereever the macro is used. On using the macro, the
| processor does not have to save the context, and does not have to restore the context, as there is no return.
3. | Macros are used for short codes only. This is because, if a function call is used instead of a macro, the
overheads (context saving and new context retrieving, and other actions on function call and return)
will take a time, T, oheaqs that is the same order of magnitude as the time, T, for execution of short
codes within a function. We use a function for codes when the Tyyemeads << Texecr and a macro for
codes when T . eags ~ OF > Texec-

a ’"’ os and functions are used in C programs. Functions are used when the requirement is that the codes
t compiled once only. However, on calling a function, the processor has to save the context, and on
festore the context. A function may also return either nothing (void declaration case) or return a

value, or an integer or any primitive or reference type of data. Macros are used when short functional
wre to be inserted in a number of places or functions. '

4 T PROGRAM ELEMENTS: DATA TYPES, DATA STRUCTURES,
MODIFIERS, STATEMENTS, LOOPS AND POINTERS
5.4.1 Use of Data Types
Whenkver a data is named, it will have the address(es) allocated at the memory. The number of addresses
allocated depends on the data type. For example, a data type long is declared for numTicks (number of ticks).
Then pumTicks will need four memory addresses.
C 3llows the following primitive data types. The char (8 bits) for characters, byte (8 bits), unsigned short

(16 bjts), short (16 bits), unsigned int (32 bits), int (32 bits), long double (64 bits), float (32 bits) and
doublp (64 bits). (Certain compilers do not take the ‘byte’ as a data type definition. The ‘char’ is then used
instead of ‘byte’. Most C compilers do not take a Boolean variable as data type. The typedef is used to create
a Bodlean type variable in the C program.)

Hata type appropriate for the hardware is used. For example, a 16-bit timer can have only the unsigned
data type, and its range can be from 0 to 65535 only.

e typedef is also used. It is made clear by the following example. A compiler version may not process
the dé¢laration as an unsigned byte. The ‘unsigned character’ can then be used as a data type. It can then be
ated as follows.

typedef unsigned character portAdata
#define Pbyte portAdata OxF1l

Use of Pointers and Null Pointers

Pointprs are powerful tools when used correctly and according to certain basic principles. Pointer is a reference
to a starting memory address. A pointer can refer to a variable, data structure or function. Before a pointer, in C
langyage symbol. * is used. For example, unsigned char *0x1000 means a character of 8 bits at address 0x1000.
A|NULL pointer declares as following: ‘#define NULL (void*) 0x0000’. (We can assign any address
instedd of 0x0000 that is not in use in a given hardware.)
Exemplary uses are as follows.
i



242 Embedded sﬂ:qms

Example 5.2

1. Consider ‘unsigned short *timer1’. Pointer timerl will point to two bytes, and the compilef will
reserve two memory addresses for the contents of timerl. ' HE
Consider two statements, ‘unsigned short *imerl;’ and ‘timerl++;’. The second statement adds
0x0002 in the address of timerl. Why? "

In C, if x is a variable, then x ++ means increment of the value of x by 1. If p is a pointer, 1
++ means increment of the value of p to the next address. )

timer] ++ means point to the next address, and unsigned short declaration allocated two addres;
for timerl. (timerl ++; or timer +=1 or timer = timer +1; will have identical actions.) Therefot$,
next address is 0x0002 more than the address of timer] that was originally defined. Had the decl
been ‘unsigned int *timer1;’ and ‘timerl ++;’ (in case of 32-bit timer), the second statement
have incremented the address by 0x0004. Iy
- Let a byte each be stored at a memory address. Let a port A in a system have a buffer regis
stores a byte. Now a program using a pointer declares the byte at port A as follows: ‘unsigneg
*portA’. The * means ‘the contents at’. This declaration means that there is a pointer and an unsa
byte for port A. The compiler will reserve one memory address for that byte. :
. Consider declarations as follows: void *portAdata; the void is the undefined data type for portA
The compiler will allocate address for the *portAdata without any type check. ~
. A pointer can be assigned a constant fixed address. Two preprocessor directives: ‘# define ppitA
(volatile unsigned byte *) 0x1000’ and ‘# define PIOC (volatile unsigned byte *) 0x1Q01°.
Alternatively, the addresses in a function can be assigned as follows: ‘volatile unsigned byte * pon
= (unsigned byte *) 0x1000’ and ‘volatile unsigned byte *PIOC = (unsigned byte *) 0x100]§ ,
instruction, ‘portA ++;" will make the portA pointer point to the next address and which is PI)Q.
. Consider, unsigned byte portAdata; unsigned byte *portA = &portAdata. The first statement difects
the compiler to allocate one memory address for portAdata because there is a byte'¢ach

at an address. The & (ampersand sign) means ‘at the address of”. This declaration means the p -:, ive
~ numiber of 8 bits (byte) pointed by portA is replaced by the byte at the address of portAdata{The
right side of the expression evaluates the contained byte from the address, and the left side ﬁﬁtﬁ
that byte at the pointed address. As the right-side variable of portAdata is not a declared pointeﬂ,f: i
the ampersand sign is kept to point to its address so that the right-side pointer gets the contents ’
-(bits) from that address. (Note: The equality sign in a program statement means ‘is replaced 4
by’.)

5.4.3 Use of Data Structures: Queues, Stacks, Lists and Trees

A data structure is a way of organizing several data elements of same types or different types together at

consecutive memory addresses. A data element in a data structure can then be identified and accessed
help of a few pointers and/or indices and/or functions. Marks (or grades) of a student in the different

th the
subjects

studied in a semester are put in a proper table. The table in the mark sheet shows them in an organized way.

Similarly, when there is a large amount of data, it must be organized properly.

A data structure is an important element of any program. Few important data structures include: stack} ane-
dimensional array, queue, circular queue, pipe, a table (two-dimensional array), lookup table, hash table and
list. Following describes different data structures and how it is put in the memory blocks in an organized way.

Any data structure element can be retrieved using the pointers.



Prcig#nming Concepts and Embedded Programming in C, C++ and Java 243

Stack A data structure, called stack is a special program element. A stack means an allotted memory block
data frbm which a data element i< reau in a LIFO (last in first out) way and an element is popped or pushed
from an address pointed by a pointer, called SP (stack pointer) or S,,, and SP changes on each push or pop
such that it points to the top o1 stack.

Varjous stack structures may be created during processing. For handling each stack, one pointer, which
points fo the stack top is needed. Figure 5.1 shows the various stack structures that are created during execution
of the pmbedded software.
1.| A call can be ~.age for another routine during running of a routine. In order that on completion of the
called r~“1ne, the processor returns only to the one calling, the instruction address for return must be
pushed on the stack. Pushing means saving on the stack top and incrementing stack to point to the next
top. Popping means retrieving the saved address from the stack top and decrementing the stack to
point to the previous top. There can also be nested calls and returns. Nesting means one routine calls
another, which calls another and return from the called routine is always to the calling routine. Therefore,
at the memory a block of memory address is allocated to the stack that saves the pushed return addresses
of the nested calls. It is shown in Figure 5.1(a). Two bytes of address are acquired in the PC from stack
on return from a call to a routine (function). Assume 10 nested calls are present in the system or other
functions. Assume that PC address is of 4 B. Memory allocation required for a stack structure for
pushing the return instruction addresses is 40 B.
2.| There may be at the beginning of an input data, for example, received call numbers in a phone, which
is saved onto a stack at RAM in order to be retrieved later in the LIFO mode. It is shown in
Figure 5.1(b). Consider for example, on each push the following are saved on a stack. (i) Four pointers
(addresses each of 4 bytes); (ii) four integers (each of 4 bytes) and (iii) four floating point numbers
(each of 4 bytes). Memory allocation required for a stack structure for pushing the function parameters
=4x4+4x4+4x4=48B.

3. An application may also create the run-time stack structures. There can be multiple data stacks at the
different memory blocks, each having a separate pointer address. There can be multiple stacks shown
as Stack 1, ..., Stack N in Figure 5.1(c).

4| Each task or thread in a multi-tasking or multi-threading software design (Sections 7.1-7.3) should
- | have its own stack where its context (Section 4.6) is saved. The context is saved on the processor on
switching to another task or thread. The context includes the return address for the PC for retrieval on
switching back to the task. There can be multiple stacks shown as saved contexts of the threads as the
stacks shown in Figure 5.1(d) at the memory for the different task contexts at the different memory
blocks, each having a separate pointer address. Threads of application programs and supervisory
- | (OS) programs have separate stacks at separate memory blocks.

Edgh processor has at least one stack pointer register so that the instruction stack can be pointed and
calling of the routines can be facilitated. '

Sofne advanced processors have multiple stack pointers. There are four pointers as follows:

1/ RIP (return instruction pointer): RIP is for saving the return address of the PC when a routine calls
another routine or ISR. RIP is called link register (LR) in ARM processor.

‘2| SP (stack pointer): SP is pointer to a memory block dedicated to saving the context on context switch
to another ISR or routine. There is a stack pointer in 8051, 68HC11 and 80196.

3| FP (data frame pointer): FP is pointer to a memory block dedicated to saving the data and local
variable values of presently running program (routine).

4| PFP (previous program frame pointer): PFP is pointer to a memory block dedicated to saved the
program data frame.

Mbtorola MC68010 processor provides USP (user stack pointer) and SSP (supervisory stack pointer).
Program runs in two modes: user mode and supervisory mode. In supervisory mode the OS functions execute.

|

H
H !



Embedded sﬁqns

There is switch from the user mode to the supervisory mode after every tick of the system clock (Sectiop 8.1.2
will give the details). MC68040 provides for USP, SSP, MSP (memory stack frames pointers), I§P and
(instruction stack pointer).

Stack 2 Byte
Holding Retum Address that PC
Addresses on Acquires
Nested calls

(a)

A Memory Block
Stack |
Holding Data with Start and End . Pointer
Retrievable in Full~"
LIFO Mode for stack top
- Em|
(b) pty

Stack 1
Holding Data
Retrievable - Set 1

Coqtents

Saved

[ ] othetn
} Stack N data of the threads

Holding Retrievable - Set N as the Stacks
Contents

(0) (d)

Fig. 5.1 (a) A stack due to nested function calls and pushing of program counters (b) Stack
of pointers and parameters pushed onto the stack before the context switch

(c) N stacks each having a separate pointer (d) Multiple stacks of contexts for the myltiple

threads

rs for

When a processor has only one SP, the OS allocates the memory addresses that are used as the poin
the multiple instructions and data stacks.

A processor has at least one SP. Each process should have a separate top of SP and a separate block tats
allocated memory for the nested function calls. A stack can also be a special data structure at the m , ﬁ
It has a pointer address that always points to the top of stack. A value from the stack is retrieved

memory in LIFO mode, while a row of data or a data in a table or a data in the queue is accessed in a
(first in first out) mode. As there are multiple processes in an embedded system, each having
context, there are multiple stacks.

Array A data structure, array is an important programming element. An array has multiple data elements,

For handling an n-dimensional array, one pointer, which points to the first element and n indices are n
Assume one-dimension array. From the first element pointer and an index of that element, an address is con-
structed from which the processor can access one of the array elements. Index is an integer that starts from O to
length—1) in a given dimension. Data word can be retrieved from any element address in the block that is|alloc-
ated to the array. A processor register may also be used for storing the index and another register for array base ppinter.
Following examples clarify the concept of array.



ing Concepts and Embedded Programming in C, C++ and Java 245

mple 5.3
. idensider that unsigned int [ 1 phone_num means an array of phone numbers, phone_num

¥

1101 refers to that first pixone number, phone_num [1] refers to the second phone number, and so on.

. e phone_num itself points to the first element.]

Qonsider unsigned char [ ] name which means an array of characters for the name. name

: 10] refers to the first character, name [1] refers to the second character and so on. The name
fithout index n_uts to the first array element. ,

bansider 1.2 results of a test in a class with 30 students with roll numbers 1-30. Let i be an index

i d instead of a roll number. Let marks in the test of roll number 1 be in the scalar integer variable,

“MH0]. Let M[0], M[1], ..., M[28] and M[29] be the variables for the marks of roll numbers 1, 2, .....,

' 29, 30, respectively. There is a pointer that points to the first scalar value M[0]. A register called
ipdex register may point to M[0]. The index register could then be incremented from O to 29

by an instruction within a loop to point to the marks of students of succeeding roll

janbers. Figure 5.2(a) shows an array in the memory block with the pointers for

fase and index that jointly point to its element marks [i].

MEMORY BUFFER ——

Vector (One Dimensional Array)
. 'Qsmn Z ///V% 'Qlimit

~—= | Marks [i] at a Memory Block ———> / Qhead *Qhail
J Start Deleted Front Pointer  Tail Pointer  Block limit Pointer
Polntbrs for Base Address Marks [0] and Start Deleted 0 e Index _(Destination ok imit Poin

Index i Queue  Address)for Index Address) Index Address)
deleting from for inserting into
@ Queue Queue
Fdr Circular Queue, when back Attempts ()
td eikceed end, back becomes equal to start
Start End
Front -~ Memory Blocks——————»~
A >
Start Deleted Front at Task 2 Back at Task 1 End
Pointer from (Pipe sink) (Pipe source) Pointer
Pipe Front Pointer Back Pointer
for deleting for inserting into
Back from Pipe Pipe
(o) (d)

Fig. 5.2 (a) An array at a memory block with one pointer for its base, first element with index = 0.
Data word can be retrieved from any element by defining the pointer and index (b) A
queue at a memory block between *Qg,,. and *Qy; With two pointers *Qpeaq 3N *Qu)
to point to its two elements at the queue front and back. A data word retrieves in the FIFO
mode from a queue (c) A circular queue at a memory block with two pointers to point to
its two elements at the front and back. A pointer on reaching a limit of the block returns
to the start of the block (d) Memory blocks at source and sink for a pipe




i
i
1
t
1
?

| | Embedded i‘mems

Example 5.4 H
Take another example. An expression, y, = X(a;. x,_;) has coefficient a,. These are stored as an array,
X; also stores as another array and output y, as yet another array. Here, i and k are the integers
varying from —N to N-1, where N is per the limits. Three arraysy[],a[land x [ ] are usedf.
calculating 20 filtered output sequences by the expression, y, = Z(a;.X,_;). Memory allocations:
required for the each array structure = 20 x 8 = 160 B. [Assume each element as double precession 2

floating pointer number of 8 B (64-bits IEEE 754 format).] i

Example 5.5

When the index increments by 1 in case of an array, the pointer to the previous element actually in
by 4, and thus the address will increment by 0x0004 in case of an array of integers. [An integ
as 4-byte number.] For array data type, * is never put before the identifier name, but an indeX
within a pair of square brackets after the identifier. Consider a declaration, ‘unsignéy |
portAMessageString [80];’. The port A message is a string, which is an array of 80 characters. No
portAMessageString is itself a pointer to an address without the star sign before it. [Note: Arr[zg is
therefore known as a reference data type.] However, *portAMessageString will now refer to all the] |
80 characters in the string. portAMessage String [20] will refer to the twentieth element (character)
in the string.

Queue A data structure, called queue is another important programming element. In case of a
reading is with the help of indices and first element address. So any element can be read or writteh at any
instance. In queue, each element is read from an address next to the address from where the queue element
was last read. This reading is called deletion. In queue, it is written to an address next to the addrdss from
where the queue element was last written. This writing is called insertion. A queue means an allotted memory
block from which a data element is retrieved in the FIFO mode. Using the queues, the bytes are sent onto a
memory buffer or network or printer.

For handling the queue, two pointers are needed and a memory buffer is allocated between buffer start
address pointed by *Q,,, and buffer-end pointed by *Qy;,;,. One pointer *Q,,, is for pointing to an address in
a memory block where an element can be inserted (added on writing). For a queue of integers, in
*Qheaq are declared. *Q,y; initially equals *Qg,,, and it should increment on each insertion at queue ba
pointer. The other *Qy,4 (queue head pointer) initially equals *Q,,, and is for pointing to an addrk

each deletion. Both pointers *Q,,; and *Qy,q4 point at the beginning to *Q,,, the starting memo;
address at the block. Insertions into a queue are usually faster than deletions. For example, in a queye at the
printer the system inserts the values faster than the rate at which values are printed. The difference in a
at the two pointers at an instance is the present queue length.

There is a possibility that the tail pointer may increment beyond a limit set for the queue end addre:
memory block. An exception (an error indication) is usually thrown whenever the pointer inc:cments beyond
the block end boundary. Else, on further increments an intrusion into other block may occur. Figure 5.2(b)
shows a memory block between *Qg,, and *Qj;,, with the two pointers *Qpeag and *Q,; needed for deletions
and insertions.




sming Concepts and Embedded Programming in C, C++ and Java 247

is a data structure with an allotted memory block (buffer) from which a data element is retrieved
O mode. It has two pointers, one for its head and the other for its tail. Any deletion is made from
! address and any insertion is made at the tail address. An exception (an error indication) must be
whenever the pointer increments beyond the block end boundary so that appropriate action can be

Queue A queueis called circular queue when a pointer on reaching a limit *Qy;,;,, returns to its
alue *Qg,. (A circular gueue means a bounded memory block allotted to a queue such that its
n incrementing never exceeds the set limit and returns to start on increment beyond the limit.) From
queue also, the data element is retrieved in the FIFO mode but no exception is thrown on exceeding
if of the memory block allocated. Figure 2.4(c) shows a memory block with a circular queue with its
inters needed for insertions and deletions.

A circglar queue is a queue in which tail and head pointers cannot increment beyond the memory block
(buffer) and reset to the starting value on insertion beyond the boundary.

Pipe pipe is a device, which uses device driver functions and in which insertions are from the source end
and deletions are at sink-end. The deletions are at the destination end, and are like in the queue. The insertion
source has an identity distinct from a destination (sink) entity where deletions are made and source and
destination are connected by some function pipe_connect ( ). Figure 5.2(d) shows memory blocks for a pipe.

is a device with insertions and deletions at distinctly defined source and destination.

ere is always a base pointer for a table. It points to its first element at the first column and first row.
two indices, one for a column and the other for a row. Figure 5.3(a) shows a memory block with the

A lodkup table is a two-dimensional structure (matrix) and is an important data set. It has only rows and
each roy has a key and on reading the key, the addressed data is traced.

A tabl is a data set allocated with a memory block. Three pointers, table base, column index and destination
index pointers (or two pointers and one displacement) can retrieve any element of the table. Lookup table
is a tatile of keys (pointers) and from reading a key the addressed data is retrieved.

Hash Table A hash table is a data set that is a collection of pairs of key and corresponding value. A hash
table ha$ a key or name in one column. The corresponding value or object is at the second column. The keys
may be lat non-consecutive memory addresses. Figure 5.3(b) shows a memory block with the pointers for a
hash.

A hasH table is a data set allocated with a memery block for key and value pairs.



Embedded *mems
A Memory Block Extends from Base Pointer onwards
Table {or Matrix Element M (0,0)}
; Column Index {or index i in
Base Pointer . ,
at Base Register M (i) at Index Register}
/
Base displacement
{or Index j T
in M (i, )} '
Defines in Rows 7 :tna_elemem
an Instruction
(or at a Register) l //A Memory
Address
-«— Columns —
(a)
A pointer for
Name | Marks Names Values Bytes for an
or or E Address that
keys objects points to Value
or object
(A pointer for each name can be (:] :‘:,&og g;jzct
at a register file or in memory) in hash tabie
(b) '
An object or  System Memory
List value \ o ‘ T
o N R R
Memory Block 1 Memory Block2  Memory Block 3
List List —>
Head ESE=  Next Top Pointer Head
Address
for a next .
= List Element or List Top List Top
g’:’nr;;')l'St s Object (When list is not Empty and
© has one object only)
Fig. 5.3 (@) A memory block with the pointers for a table (b) A memory block for hash table with
the pairs of key and value in a hash (c) The memory blocks in system memory with the

pointers for a list

List A list is a data structure with a number of memory blocks, one for each element. A list has a
pointer for the memory address from where it starts. Each list element at the memory also stores the

Figure 5.3(c) shows the memory blocks with the pointers for a list.

Example 5.6 1
Assume on a real-time clock tick, the ISR increments the counts in a number of RTCSWTs (real-ti @lock
interrupts-triggered software timers). Assume that there is a list of RTCSWT timers that are actis ?Pt an

instant. The top of the list can be pointed as ‘*RTCSWT_List.top’ using the pointer. RTCSWT_Li Jtop is



ming Concepts and Embedded Programming in C, C++ and Java

e pointer to the top of the contents in a memory for a list of the active RTCSWTs. Consider the

ent ‘RTCSWT_List.top ++;” It increments this pointer in a loop. It will not point to the next top of

ther object in the list (another RTCSWT) but to some address that depends on the memory addresses
, g d to an item in the RTCSWT_List. Let ListNow be a pointer within the memory block of the list top
, t. A statement ‘*RTCSWT_List. ListNow = *RTCSWT_List.top;” will do the following.

FSWT_List pointer is now replaced by RTCSWT list top pointer and now points to the next list element

(objed®). (Note: RTCSWT_List.top ++ for pointer to the next list object can only be used when RTCSWT_List

dnits are placed in an array. This is because an array is analogous to consecutively located elements of

igtzat the memory).

idcr a statement: ‘while (* RTCSWT_List. ListNow -> state = NULL) {numRunning ++};’.

; i pointer to ListNow in a list of software timers that are running at present is not NULL, then

 dxecute the set of statements in the given pair of opening and closing curly braces. One of the

prant uses of the NULL pointer is in the last element of the list to point to the end of a list, or -

: at the list. It has one memory block allotted to each element. The list top pointer points to first
ket and the last element points to NULL.

Table 5.2 summarizes the exemplary uses of queues, stacks, arrays, lists and trees.

Tablle 5.2 Uses of the Various Data Structures in a Program Element

Data $tructure Definition and when used Example(s) of its use

Queud It is a structure with a series of elements with a header (i) Print buffer. Each character is
element waiting for a read operation, called deletion to be printed in the FIFO mode.
operation. An operation can be done only in the first in - (ii) Frames on a network (Each
first out (FIFO) mode. It is used when an element is not frame also has a queue of a stream
to be accessible by any index and pointer directly, but of bytes). Each byte has to be sent
only through the FIFO. An element can be inserted only for receiving as a FIFO.

at the end in the series of elements waiting for an operation.  (iii) Image frames in a sequence.
There are two pointers, one for deleting after the operation (these have to be processed as a

and the other for inserting. Both i-...cment after an FIFO).
operation.

Stack It is a structure with a series of elements with its last element (i) Pushing of variables and

; waiting for an operation. An operation can be done only in  context on interrupt or call to
the last in first ont (LIFO) mode. It is used when an element  another function. (ii) Retrieving
is not to be accessible by any index or pointer directly, but popping the pushed data from a
only through the LIFO. An element can be pushed (inserted) = stack.
only at the top in the series of elements still waiting for an
operation. There is only one pointer used for pop (deleting)
after the operation as well as for push (inserting). Pointers
increment or decrement after an operation. It depends on
insertion or deletion.

(Contd)




Embedded *tpms

Data Structure

Definition and when used

Example (s) of its usé

Array (one-
dimensional
vector)

Multi-
dimensional
array

List

Tree

It is a structure with a series of elements with each element
accessible by identifier name and index. Its element can be
used and operated easily. It is used when each element of
the structure is to be given a distinct identity by an index
for easy operation. Index stars from 0 and is a positive
integer.

It is a structure with a series of elements each having
another sub-series of elements. Each element is accessible
by the identifier name and two or more indices. It is used
when every element of the structure is to be given a distinct
identityby two or more indices for easy operation. The
dimension of an array equals the number of indices that are
needed to distinctly identify an array element. Indices start
from 0 and are positive integers.

Each element has a pointer to its next element. Only the
first element is identifiable and the list top pointer (header)
does it. No other element is identifiable and hence is not
accessible directly. By going through the first element, and
then consecutively through all the succeeding elements, an
element can be read or read and deleted or can be added to
a neighbouring element or replaced by another element.

There is a root element. It has two or more branches each
having a daughter element. Each daughter element has two
or more daughter elements. The last one does not have
daughters. Only the root element is identifiable and it is
done by the treetop pointer (header). No other element is
identifiable and hence is not accessible directly. By
traversing from the root element, then proceeding
continuously through all the succeeding daughters, a tree
element can be read or read and deleted or can be added
to another daughter or replaced by another element. A
tree has data elements arranged as branches. The last
daughter, called leaf node has no further daughters. A
binary tree is a tree with a maximum of two daughters
(branches) in each element and none at leaf-element.

ts = 12 * s(1); Total salary,
times the first month salary.
marks_weight [4] = marks_
[0]; weight of marks in the
with index 4 is assigned the {same
as in the subject with index 0. :

Handling a matrix or tensor.
Consider a pixel in an imag
frame. Consider Quarter-
image pixel in 144 x 176 si
image frame (recall Section }.2.7.)
pixel [108, 88] will represent a

pixel at the 108-th horizontal fow
and the 88-th vertical colu
1See the following note also

A series of tasks which are gctive.
Each task has pointer of thenext
task. Another example is a-thenu
that points to a sub-menu.

An example is a directory. I§ has
number of file folders. Eacl'j file
folder has a number of otheq file
folders and so on. In the end is a
file.

1

pixel [0,0] represents the pixel at the left corner on the top and pixel [143, 175] represents that at the right bottom. pixe] [10,108,

88] is a pixel data element in a three-dimensional array form. It represents pixels at the same position (108 x 88) in the terjth frame.

The reader may refer to a standard textbook for the C and C++ data structure algorithms.

5.4.4 Use of Modifiers

The actions of modifiers are as follows:
Case (i): Modifier ‘auto’ or no modifier means that there is ROM allocation for the variable by lgcator if

it is initialized in the program. RAM is allocated by the locator, if it is not initialized in the program|




only the|positive values of 16, 32 or 64 bits, respectively.
Case (iii): Modifier ‘static’ declaration is inside a function block. Static declaration is a directive to the compiler

then does not save on a local parameter stack. When several tasks are executed in cooperation, the

declaratibn static helps. Consider an exemplary declaration, ‘private: static void interrupt ISR_RTI (). The static
declaration here is for the directive to the compiler that the ISR_RTI () function codes limit to the memory black

() function. The private declaration here means that there are no other instances of that method in
object. It then does not save on the stack. There is ROM allocation by the locator if it is initialized in the
pro . There is RAM allocation by the locator if it is not initialized in the program.
Case| (iv): Modifier static declaration is outside a function block. It is not usable outside the class or
module jn which it is declared. There is ROM allocation by the locator for the function codes.
Case|(v): Modifier const declaration is outside a function block. It must be initialized by a program. For
exampld, #define const Welcome_Message ‘There is a mail for you’. There is ROM allocation by the locator.
Casel(vi): Modifier register declaration is inside a function block. It must be initialized by a program. For
example, ‘register CX’. A CPU register is temporarily allocated when needed. There is noROM or RAM allocation.
Casé|(vii): Modifier interrupt: It directs the compiler to save all processor registers on entry to the function
codes arid restores them on their return from the function (this modifier is prefixed by an underscore, °_interrupt’
i ain compilers).
d (viii): Modifier extern: It directs the compiler to look for the data type declaration or the function in

Casd (ix): Modifier volatile outside a function block is a warning to the compiler that an event can change
its valué or that its change represents an event. An event example is an interrupt event, hardware eveat or
dk communication event. For example, consider a declaration: ‘volatile Boolean IntrEnable;” It changes

¢ = 0 during code optimization and will take ¢ = 1. But if ¢ is an event variable, it should not be
ized. IntrEnable = 0 is at the beginning of service routine in case an interrupt-enabled variable is used
abling any interrupt during the period of execution of ISR. IntrEnable = 1 is executed before return
£ ISR. This re-enables the interrupts at the system. Declaration of IntrEnable as volatile directs the

by the lpcator.
Casd (x): Modifier volatile static declaration is inside a function block. Examples are: (a) ‘volatile static
epr} RTIEnable = true’; (b) ‘volatile static boolean RTISWTEnable’; and (c) ‘volatile static boolean
RTCSWT_F.’ The static declaration is for directive to compiler that the variable should be accessible outside
optimize as an event can modify. It then does not save onto the local parameter stack of the function. When
several [tasks are executed in cooperation, the declaration static helps. The compiler does not optimize the
code bacause of declaration volatile. There is no ROM or RAM allocation by the locator.

Sometifmes a set of statements is repeated in a loop. Generally, in case of array, the index changes and the
same spt is repeated for another element of the array. Loops are used when executing a set of statements
repeateifly. A loop starts from an initial value or condition and executes till the limiting condition is fulfilled.
There dan be certain parameter, which changes each time from its initial condition up to a limiting condition.



@ s o 7 | Ewms

For example, consider the following. for (i = 0; i < = 100; i++) {/*asetof statements which
repeatedly execute */ }. The initial condition is assigned as i = 0 and the last condition for the loop tp ¢
till i is less or equal to 100. The set of statements in the bracket executes from start to end and beford return to
start the i increments by 1. The for statement allows set of statements to repeatedly execute 101 ti
values of i =0, 1,..., 99, 100.

For another example, consider the following. 1 = 0; while (i < = 100) { { /* aset of statemehts which
repeatedly execute */ }; i++;}. The initial condition is assigned as i = 0 and is set before the while loop.
loop executes till i remains less or equal to 100. i++ increments before the return to test the while co
while statement allows the set of statements to repeatedly execute with values of i = 0, 1,..., 99, 100.

If a condition remains true, then while loop will execute infinitely. For example, while (1){ { /% a set of
statements which execute repeatedly execute */ }. The loop will execute infinitely because 1 is always true.
Infinite loops are never desired in usual programming. Why? The function or task will never end and never
exit or proceed further to the codes after the loop. Infinite loop is a feature in embedded system programming!
The system software in the telephone has to be always in a waiting loop that finds the ring on ling An exit
from the loop will make the system hardware redundant.

Example 5.7 gives a C program design in which the program starts executing from the main ( ) function.
There are calls to the functions and calls on interrupts in-between. It has to return to the start. The system main
program is never in a halt state. Therefore, the main () is in an infinite loop within the start and end.

Example 5.7 ?

£

. # define false .0 . : : : |
# define true 1 ;
I*#*******#**********************************************************/ P

..void main{void) {. . 4
/* The Declarations here and lmuahzatnon here */ , !

iy

D A R L ki o B R

I* Infinite whlle loop follows Smce the condition set for the while loop is always true, the stleents
thhm the curly braces continue to execute */ i

- while (true) { ~

/* Codes that repeatedly execute */

ek

)

Example 5.8 gives an example for use of polling for an event or message in a program. !
Assume that the function main has a waiting loop and simply passes the control to an RTOS. ch task
controlled by the RTOS will also have codes in an infinite loop. Example 5.9 demonstrates the infinjte loops
within each task.

Example 5.8 d
# define false 0 | i
# define true 1 o i

o R ot

[RER Aok kR L2l n Al e L I P e Y wl




k]

Plok m ming Concepts and Embedded Programming in C, C++ and Java

vdigd main (void) {

PiCall RTOS run here */

ftqd.run ();

viile (1) {

*Infinite while loops follows in each task. So never there is return from the RTOS. */

i
L2

!
4
:?*****************************************************************/

yaid taskl (....) {
{Peclarations */
‘5\:

i S

while (true) {

[*KCodes that repeatedly execute */

i b

> @5’ odes that execute on an event */

f [flagl) {....;}; flagl =0;

* I odes that execute for sending message to the kernel */

infssagel ();
ﬁ*****************************************************************/

Beclarations */

vhie (true) {

odes that repeatedly execute */
i b .

* fodes that execute on an event */

£ {8ag2) {......;}; flag2 =0;

Jeodes that execute for sending message to the kemnel */
ngasage2 ();

28

'h*****************************************************************/

k?*****************************************************************/

d taskN (.) {




o)

.while (true) {
- /* Codes that repeatedly execute */

o R A U

i

N
ey

/* Codes that execute on an event*/

if (flagN) {....;}; flagN =0;

/* Codes that execute for sending message to the kernel */
messageN ();

|3

}

There can be more than one infinite loops. The code inside infinite-loop waits for an inter-process-
communication (IPC) message or event flag or a set of events through the OS.

The code inside the loop of the running task generates a message that transfers to the kernel. The
OS kernel, which passes to the waiting task message, detects it and when that task starts the OS pre-
empts the previously running task.

Let an event be setting of a flag, and the flag setting is to trigger the running of a task whenever the kernel
passes it to the waiting task. The instruction SWI executes to send the message to the another task function for
a service.

Conditional statements are used very often. If a defined condition(s) is fulfilled, the statements wi
curly braces after the condition (or a statement without the braces) are executed, otherwise the
proceeds to the next statement or to the next set of statements.

A set of statements is called switch-case. A program switches to a case as per the result of switch ex
result. For example, Switch (i) means switch as per the case for the value of i. Example 5.9 shows an ap
of infinite loop and switch case statement for programming for GUI in mobile phones (Example 1.5.4).

Example 5.9

Consider a smart mobile phone (Example 1.5.4). Assume that the screen state j is between 0 and K, amy
1,2, ... or K -1 possible states (set of menus). An interrupt is triggered from a touch screen GUI and &
posts an event messagem =0, 1, 2, ..., or N — 1 as per the selected the menu choice 0, 1,2, ..., N- 1:
there are N menu choices for a mobile phone user to select from a screen in state j. The m will depend &
screen position at the touched position. FigneSAshowsﬂ\euseofapmgrmnmingmodelmm,f d
facilitates execution of one of the multiple possible function calls; a function executes after polling for
state j and for a message m from an ISR as per the user choice ‘

# define true |

# define false 0

/********************************************************************/

void main (void) {

/* declarations */ ;

while (true ) { /* Execute infinite loop */ 1
poll_Screen_State (i); /* Call a function to poll screen state. A state means a set of choices OfZW“

displayed on the touch screen */ e

/




gming Concepts and Embedded Programming in C, C++ and Java 255

S ISR on User Menu Choice selection
}; h Poll for present screen state s and message for menu-choice selected m;
nterrupt Case(screenstate-so,menuselected-mO)exectnafunction(so,mO);
s on MeM | Cace (screen state = S0, menu selected = m1) execute function (0, m1);
" select key | ,
| ] Case (screen state = sj, menu selectad = mp) execute function (sj, mp);
! :
: b e o e o e e e e e o ————
i B - function (g, Mow1)
- tunction (so, ma Runcode
! ' Buncode | Signal
{”""‘:’ """"""""""""""" function (8o, M)
T} function (s, m) Run code
b : .......................................... Signal
Foge { §&' f_‘ﬂl
: [ ,
R Sttt bbbt function (sa, Mx-1)
: | function (84—, mg) Signal
- R do T [
Signal

Fig.'5(4 Programming model use here, which facilitates execution of one of the multiple possible
' function calls and the function executes after polling for screen state j and for a message
m from an interrupt service routine as per the user choice

N *#*************************************************************/

poll_Screen_State (j)
#t number j identify a screen state */

/* Let

Sikh ) {

Cqs {: poll_menu0 (); exit ()
Casg¢ 1: poll_menul (); exit ()
: fi 5
Casq poll_menuJ (); exit ()

: poll_menuK (); exit ()

Nt
“pgmers
s

‘::**************#*************************************************/
poll_menu0 {/* Code for polling for choice from menu 0 for screen state 0 */ }
4 ISR sends message m as per the choice selected by the user from the menu in screen state j */

h (m ) { :
40: {/*Code, which executes when the choice is menu 0 Screen state 0/ ; exit ( );}




Case 1: {/*Code, which executes when the choice is menu 1 Screen state 0%/ */ ; exit ()}

Case N - 1: {/*Code, which executes when the choice is menu N — 1 Screen state 0*/ */ 5 exit ( ].
)
}

/*******#********************#***********************#*****#*********/
. /* Codes for Screen state 1, 2, ..., j */

/* An ISR sends message m as per the choice selected by the user from the menu in screen state ir *
void poll_menuJ {/* Code for polling for choice from menu m for screen state J */ "
/* An ISR sends message m as per the choice selected by the user from the menu in screen state i1
Switch (m ){ o

Case 0: {/*Code, which executes when the choice is menu 0 Screen state J¥ ; exit ()3}
Case 1: {/*Code, which executes when the choice is menu 1 Screen state ¥ ¥ exit ();)

Case N-1: {/*dee, wlnch executes when the choice is menu N - 1 Screen state j*/ */ ; exit ( );}” )
) o
}

/*******************************************************#*##*********/

./* Codes for Screenstate j + 1,2, ..., K- 1%

void poll_menuK {/* Code for polling for choice from menu m for screen state K — 1%/

}
}

[k sk ok ok ok ok ok sk ok ke o ook ol b ke s ook ok sk ok skl sk okl o s sk sk ok ke ke ok ¥ k ok ok % okskok k k*x/

5.4.6 Use of Function Calls

Table 5.1 gave the meanings of the various sets of instructions in the C program. There are special furictions
for starting the execution of a program, ‘void main (void)’. Given next are the steps to be followed when
using a function in the program.

Example 5.10

1. Declare a function as follows: ‘int run (int indexRTCSWT, unsigned int maxLength, unsigngfl
numTicks, SWT_Type swtType, SWT_Action swtAction, boolean loadEnable); The run )
function name. Here int specifies the returned data type. There are arguments inside the bragkats.
Data type of each argument is also declared. A modifier is needed to specify the data type ¢
returned element (variable or object) from any function. Here, the data type is specified as an inkbger.
(A modifier for specifying the returned element may also be static, volatile, interrupt and exyy

2. Consider a device driver function open (fd, options, device_parameter). The called function ng
‘open’. It sets the device configuration. When the function is called by statement, open (4, O_RE
9600). First, second and third arguments that are passed, are 4, O_RDWR and 9600, First argg



4 ‘ ing Concepts and Embedded Programming in C, C++ and Java 257]

d for the device descriptor and passes the value fd = 4. The descriptor is an identity, which is an
;ger number. The second argument describes the device option setting as read and write device
s third argument describes the device parameter, baud_rate, the rate by which the serial line
b ice is to be configured for UART communication. The same open function is used for the
er options and parameters of the device. For example, open (4, O_RD, 1200) devices,
fhich means that the device 4 is read only and the device parameter is 1200. o

Defining the statements in function: Just as each variable has to be given the contents or value, each
ction must have statements. Consider the statements of the function ‘run’. These are within a pair
df curly braces as follows: ‘int RTCSWT:: run (int indexRTCSWT, unsigned int maxLength, unsigned
_ipt numTicks, SWT_Type swtType, SWT_Action swtAction, boolean loadEnable) {...};’. The last
_sfatement in a function is for the return and may also be for returning an element or data structure or
dbject.
Call to a function: Consider an example: ‘if (delay_F = = true && SWTDelaylEnable == true)
R_Delay (100);". There is a call on fulfilling a condition. The call can occur several times and can
e repeatedly made. On each call, the values of the arguments given within the pair of brackets pass
for use in the function statements. There is only one argument in ISR_Delay.
next are the steps in transfer of values from the arguments of calling function to called function’s
argumerts.

(1) Passing the Values (elements): The values are copied from argument in calling to called function
argumenjt. When the function is executed in this way, it does not change a variable’s value at the calling
function on return from the called function. A function can only use the copied values as its own variables

&

unc ;a g during execution of the codes. The advantage is that the same values for use in the remaining
g nsarepresentonretummmecaﬂingfyncﬁon.meatgumcntsthatarepassedbythevalues
ayed temporarily on a local parameter stack and retrieved on return from the called function.

centrant functions call: Re-entrant function is usable by the several tasks and routines synchronously (at
the same time). This is because all its argument values are retrievable from a stack of the local variables, data
structurgs and objects. A function is called re-entrant function when the following three conditions are satisfied.

(i) All the arguments pass the values and none of the argument is a pointer (address) whenever a calling
nction calls it. There is no pointer as an argument in the Example 5.11 of function ‘run’.
(i1) en an operation is not atomic, the function should not operate on any variable, which is declared

butside the function or which an ISR uses or which is a global variable but passed by reference and not
passed by value as an argument into the function. (The value of such a variable or variables, which is
w0t local, does not save on the stack when there is a call to another program.)

Let ®s understand atomic operation. The following is an example that clarifies it further. Assume that at a
server (software), there is a 32-bit variable count to count the number of clients (software) needing service.
There i no option except to declare the count as a global variable that shares with all clients. Each client on



a connection to a server initiates increment of count. Count increment operation should be atomic;;red till it

completes the server disables requests from other clients. Assume that a service routine for real-tinfe clock
tick increments the clock ticks in numTicks, which is a 64-bit variable. All operations using four fr eight
byres of the variable represent one atomic unit. The implementation by the assembly code for inc
that enemory location becomes non-atomic in the following situation. Assume that the processor is
and therefore the 32- or 64-bit increment is done in four or eight operations, respectively. Assume
is no disabling of interrupts or execution of other routines or tasks till all operations for 64-bit incre;
complete. Now if an interrupt occurs in-between the incrementing, the wrong values of count can be |passed.

(iii) Tha function does not call any other function that is not itself re-entrant.

(3) Passing the references: When an argument value to a function passes through a pointer, tg called

function can change this value. On returning from this function, the new value will be available in

Pprogram or another function called by this function. This is because there is no saving on stack of a
cither passes through a pointer in the function arguments or operates on the function on a global variable or
operates through a variable declared outside the function block.

5.4.7 Multiple Function Calls in Cyclic Order
One of the most common methods is multiple function calls made in a cyclic order in an infinite loop.

Example 5.12 g

Assume 64 kbps network (Example 4.1). Figure 5.5 shows the model of the multiple function ca 8

typedef unsigned char int8bit; aE
# define int8bit boolcan
# defime false 0 11
# define true |

Y

tunction f1
Run code 1

Tor e

B

Run code f
retum L
: i

Fig. 5.5 Programming model of multiple function calls




Propfming Concepts and Embedded Programming in C, C++ and Java S ~

hsfgned char *portAdata;

charAFlag; L _ R

»a checkPortAChar ( ); /* An interrupt service function to return a Boolean flag, if there is character
tcdived at port A */ ‘ | ’

i ?declaranons for the functions */ void mPortA (unsngrwdchar*),

figd pherMData(mmgnedphar*)

v" iencryptPortAD? ' cunsigned char *);

v§ oum:B('mmgnedchar*)

g (truc) {
/‘! g : des that repeatedly execute */
/* Fenction for availability check of a character at port A*/
while (charAFlag != true) checkPortAChar ( );
/* Panction for reading PortA character*/
inPortA (unsigned char *portAdata);
/* Fanction for deciphering */
. decipherPortAData (unsigned char *portAdata);
/* Fanction for encoding */
! | encryptPortAData (unsigned char *portAdata);
/% Fiinction for retransmit output to PortB*/
i §# outPort B (unsigned char *portAdata);
bEh

at
/, 0l ke % ¥ * * ¥********************************‘**********’
/* ki interrupt service function to return a Boolean flag, if there is character received at port A */

boglean charAFlag;

n dlean checkPortAChar (),

mPortA (unsigned char *{...}; /* The ISR, which gets the input character at the address
fAdata */

fok ok o ok 3¢ 36 o o ok A o8 ok o ok ok e s ok ofe el e e o ke e ke sk et e el sk sk ok * T-T$=—/

¥ be .

5.4.8 Function Pointers, Function Queues and ISR Queues

Let the * sign not be put before a function’s name and there are arguments within a pair of brackets after the
name.| The statements for the function execute using the argument values or references for data variables.
The sfatements are present inside a pair of the curly braces. Consider a declaration in Example 5.12,
‘booléan checkPortAChar ( );’. ‘checkPortAChar’ is a function, which returns a boolean value. Now,
chegkPortAChar is itself a pointer to the code’s starting address. The address has the codes for statements.
The PC will fetch the address of checkPortAChar when a call the function is made, and the CPU sequentially
execues the function statements from here.

Now, let the * sign be put before the function’s name. ‘* checkPortAChar’ will now refer to all the compiled
statenjents in the memory that are specified within the curly braces.

Consider a declaration in the example, ‘void inPortA (unsigned char *);’.

1] inPortA means a pointer to the statements of the function. Inside the bracket, there is an unsigned

character pointed by some pointer.

I
i



2. *inPortA will refer to all the compiled statements of inPortA.
3. (* inPortA) will refer to calling of statements of inPortA.
4. What will a statement, ‘void create (void (*inPortA) (unsigned char *), void *portAStack, unsighed
char portApriority);’ mean? '
a. First modifier ‘void’ means create a function, which does not return any thing.
b. ‘create’ is the function, which can be called after its declaration in a statement.
c. Consider first argument of this function ‘void (*inPortA) (unsigned char *portAdata)’. (*inPprtA)
means to call the statements of inPortA the argument of which is ‘unsigned char *portA
d. The second argument of create function is a pointer for the portA stack at the memory.
e. The third argument of create function is a byte that defines the portA priority.

An important lesson to be remembered from this discussion is that a returning data type specification
void) followed by ‘(*functionName) (functionArguments)’ calls the statements of the functionName
the functionArguments, and on a return it returns the specified data object. We can thus use the fi
pointer for invoking a call to the functions in a C function.

5.4.9 Queuing of Functions on Interrupts

When there are multiple ISRs, a high priority ISR is executed first and the lowest priority, in the end.
Section 4.5). It is possible that function calls and statements in any of the higher priority interrupts may bl
execution of low priority ISR and there may be deadline miss for the low priority ISR. Using the function
in the routines, and forming a queue (FIFO) for the function pointers is a solution for the deadline problem fi
priority routines. The queued functions are then executed at a later stage. The queued functions are the de
procedure calls (DPCs) and can be called ISTs when the OS handles them as threads (Section 7.3). Figures 5/6(a),
(b) and (c) show the main function, function multiple calls calling the FunctionQueues and ISR, respectively. The
figure shows a programming model example in which the multiple function pointers are queued by the ISRk and
device-driving ISRs. Each ISR statements have a short set of codes. It executes essential codes within the ISR and
rest of the codes in queued functions. Figure 5.6(d) shows queue of function pointers.

Example 5.13 i1
344
The following is code in which on a return from a service routine, the operation fun on
‘operationFunctionQueues ( )’ gets the function pointers from the queue and then executes the poi
functions.
* Insert here all preprocessor directives, commands and functions except the main and portA_ISR _
() functions. */ .
void main (void) { ’ ' j l
/* The Declarations of all variables, pointers, functions here and also initializations */ % ’*
‘ ! o . X 3
!

&t

8
| 1
whﬂe (true) { operationFunctionQueues ( ); /*Call Functlons from the Queue in cyclic (Round Ré‘ié)
‘Mode*/ E

15
}

/******************************************************#****************/ 1
. . . ) ot
void operationFunctionQueues ( ) { ; 3

unsigned char *portAdata;

T R




f Out_B is an arr'*v which inserts the queue elements */

ElArray In_.5_Out_B = new QueueEleray (QEIType * QelementsArray, 65536),
IAFF = false; portAlEnable = true;.

s that repeatedly.execute */
A V]ag 1= true) chkaortAChar (In_A__Out__B, STAF)

[ .
[Hr sk kxR s [nterrupt Service Routine e T TR e T Y
: 5 P >~ PortA Call on Interrupt
i : Service ,
i Main () { Foue.
i ? L, wh
1 e paction thet  Insert Port A Data
| Functions at Read Function
the Queue Pointer in Queue
e ) Insert Decipher
A A : Function Pointer,
(@ Encrypt Function
| b Pointer and Port
_ B Da{a Output
Functions | "Qtop Function ina
by Called Queue
: One by One RETURN
i g ©
2
; e [ Call Read *Qhead AQueue of
: c Function-Pointers
' Cali Decipher
© l Deciphe l *Qtail o
: Call Encrypt Points to —
‘ | i ________ - Function-Pointers Read
— callPotBOut | Queue-Tail *Decipher
'On ISR Finish n
Encrypt
; —s *Port B Out
p I (b) > (@
Fig. B.ﬁ (a) Main ( ) function (b) Function ‘opertionFunctionQueues ()’ (c) Creation of a queue of
i 1 the function pointers by the interrupt service routme (d) Queue of function pointers
I :;




void checkPortAChar (QueueElArray In_A_Out_B, volatile boolean portAIF) { ’5 >
while (portAIF != true) { }; /*Wait till the occurrence of Port A Interrupt */ !
/* Call ISR_PortAlnputl, an Interrupt Service Routine called on the port interrupt */ B
ISR_PortAlnputl (QueueElAray In_A_Out_B); o i

B BRI
/}*#*****************h}mpt SCrVice ROﬂtlne ********************/ i
void interrupt ISR_PortAInputl (QueueElArray In_A_Out_B) { ' &l
disable_PortA_Intr (); /* Disable another interrupt from port A*/ 1
void inPortA (unsigned char *portAdata); /* Function for retransmit output to Port B*/
void decipherPortAData (unsigned char *portAdata); /* Function for deciphering */
void encryptPortAData (unsigned char *pertAdata); /* Function for encrypting */
void outPortB (unsigned char *portAdata); /* Function for Sendmg Output to Port B*/ aE
/* Insert the function pointers into the queue */ ‘ B
In_A_Out_B.QElinsert (const inPortA & *portAdata); ‘
In_A_Out_B.QElinsert (const decipherPortAData & *portAdata);
In_A_Out_B.QElinsert (const encryptPortAData & *portAdata);

_A_Out_B.QElinsert (const outPortB & *portAdata);

enable_PortA_Intr ( ); /* Enable another interrupt from portA*/
}

/*************************************************************/

A programming model concept is that use the function queues and queues of function pointers bmlt
ISRs. It reduces significantly the ISR latency periods. Each device ISR is therefore able to execute
stipulated deadline. . e

~ 5.5 ~ OBJECT.ORIENTED PROGRAMMING

When a large program is made, an object-oriented language offers many advantages. An object-driented

programming (OOP) language provides for the following:
1. Defining the object or set of objects, which are common or similar objects within a program and can

be used in many programs.

Defining the methods that manipulate the objects without modifying their definitions.

Creation of multiple instances of the defined object or set of objects or new objects.

Inheritance.

Data encapsulation.

Design of reusable components.

An object can be characterized by the following.

(a) An identity (a reference to a memory block that holds its state and behav1our)

(b) A state (its data, property, fields and attributes).

(c) A behaviour (method or methods that can manipulate the state of the object).

In a procedure-based language, like FORTRAN, COBOL, Pascal and C, large programs are split into simpler
functional blocks and statements. In an object-oriented language like Smalltalk, C++ or Java, the logical gfoups
(also known as classes) are first made. Each group defines the data and the methods of using the data. A set of
these groups then gives an application program. Each group has internal user-level fields for the data the

A o




ing Concepts and Embedded Programming in C, C++ and Java

of processing that data at these fields. Each group can then create many objects by copying the group
ing it functional. Each object is functional. Each object can interact with other objects to process the
ta. The language provides for formation of classes by the definition of a group of objects having similar
s and common behaviour. A class creates the objects. An object is an instance of a class.

EMBEDDED PROGRAMMING IN C++

5.6.I Advantages of C++

C++ is an OOP language, which in addition, supports the procedure-oriented codes of C. Program coding in
C++ godes provides the advantage of OOP as well as the advantage of C and in-line assembly. Programming

concepts for embedded programming in C++ are as follows:
A class binds all the member functions together for creating objects. The objects will have memory

allocation as well as default assignments to its variables that are not declared static. Let us assume that
each software timer is an object. It gets the count input from a real-time clock. It has a terminal count

| value after which it generates a software interrupt. It is initialized to a count value. Now consider the
codes for a C++ class RTCSWT. A number of software timer objects can be created as the instances of

'‘RTCSWT. Each instance of RTCSWT can have different values of present, initial and terminal counts
but has identical methods to manipulate the count.

2| A class can derive (inherit) from another class also. Creating a child class from RTCSWT as a parent
class creates a new application of the RTCSWT.

3] Methods (C functions) can have the same name in the inherited class. This is called method overloading.
Methods can have the same name as well as the same number and type of arguments in the inherited
class. This is called method over-riding. These are the two significant features that are extremely

-useful in a large program.

4| Operators in C++ can be overloaded like method overloading. Following statements show how the
operators ++ and ! are overloaded to perform a set of operations.(Usually the ++ operator is used for

postincrement and preincrement and the ! operator is used for a not operation.)

cdnst OrderedList & operator ++ ( ) {if (ListNow != NULL) ListNow =
ListNow -> pNext;

turn *this;}

bdpolean int OrderedList & operactor ! ( ) const {return (ListNow != NULL)

ing concatenation.)

is struct that binds all the member functions together in C. But a C++ class has object features. It can
be extended and child classes can be derived from it. A number of child classes can be derived from a
class. This feature is called polymorphism. A class can be declared as public or private. The data and
s’ access are restricted when a class is declared private. Struct does not have these features.

5.62 Disadvantages of C++

P

Progtam codes become lengthy, particularly when following features of the standard C++ are used.
. Template.

|
i



i

H

§
i

Multiple inheritance (deriving a class from many parents).

Exceptional handling.

Virtual base classes. ’
Classes for IO streams. [Two library functions are cin (for character(s) in) and cout (for character(s)
out).] The I/O stream class library provides for the input and output streams of characters (bytes). It
supports pipes, sockets and file management features.

wnhwe

5.6.3 Optimization of Codes in Embedded C++ Programs to Eliminate the
Disadvantages

Embedded system codes can be optimized when using an OOP language by the following
1. Declare private as many classes as possible. It helps in optimizing the generated codes. ’
2. Use char, int and boolean (scalar data types) in place of the objects (reference data types) as argiments
and use local variables as much as feasible. i
3. Recover memory already used once by changing the reference to an object to NULL.
A special compiler for an embedded system can facilitate the disabling of specific features provided in
C++. Embedded C++ is a version of C++ that provides for a selective disabling of the aforementioned fi
so that there is a less run-time overhead and less run-time library. The solutions for the library functi¢ns are
available and ported in C directly. The IO stream library functions in an embedded C++ compiler are glso re-
entrant. Hence using embedded C++ compilers or the special compilers make the C++ a significantly more
powerful coding language than C for embedded systems.

development. Embedded C++ is a new programming tool with a compiler that provides a small
library. It satisfies small run-time RAM needs by selectively de-configuring features like template,
inheritance, virtual base class and so on, when there is a less run-time overhead and when the less
library-using solutions are available. Selectively removed (de-configured) features could be templa
time type identification, multiple inheritance, exceptional handling, virtual base classes, IO streams and
foundation classes. [Examples of foundation classes are GUIs (graphic user interfaces). Exemplary GUIs are
buttons, checkboxes or radios.]

An embedded system C++ compiler (other than gcc) is Diab compiler from Diab Data. I: also provides the
target (embedded system processor) with specific optimization of the codes. The run-:ime analysi$ tools
check the expected run-time error and give a profile that is visually interactive.

Embedded system programmers use C++ due to the OOP features of software reusability, extendMili
polymorphism, function over-riding and overloading along with the portability with the C codes atid’
line assembly codes. C++ also provides for overloading of operators. Embedded C++ is a C4+ vigh
which makes large program development simpler by providing OOP features of using an object,
binds state and behaviour and which is defined by an instance of a class. We use objects in a wa
minimizes memory needs and run-time overheads in the system.

for
feaes

EMBEDDED PROGRAMMING IN JAVA

5.7.1 Java Programming Basics

Java programming starts from coding for the classes. A class has members. A field is like a variable of struc
in C. A method defines the operations on the fields, similar to function in C. Table 5.3 summarizes the basic




Pr@wmmg Concepts and Embedded Programming in C, C++ and Java

d the exemplary uses. Class instance fields and instance methods are the members, whose new instances
created as when the objects are created from the class. Class is a named set of codes that has a number

ations are performed on the objects by passing the messages to objects in OOP. Each class is a logical
ith identity, state and behaviour specifications. For an in-depth learning of the programming language,

Table 5.3 Various Elements in a Java Program

Java |Program Explanation Example(s) of its use

Elamfnt

Loca} variable A variable within a block of codes is defined inside the {for (int i = 0; int

curly braces and has limited scope. totalOfMarks = 0; i<5;
i++) {totalOfMarks + =
subjectMarks[il;};
return totlaOfMarks;}.
Here i is the local variable. The i
does not have any scope outside
the for loop.

Instapce Blocks of Java codes, which are given a name, a call findTotalMarks ( ) { };

methpd (invocation) is made by other Java codes that can also pass.  The method find TotalMarks () { }

(transmit) the needed reference to the values, parameters, will also be created in object
and so on. ‘ created from the class.

Instdnce field  An identifier with a name and using that name a String tele_number; Here,
declaration is made in a Java class. It does have a default tele_number is an instance field of
value and the field is also present in the objects which are ~  the class and will also be created in
instances of the class. the objects created from that class.

Clasy A class is a basic structural unit in a Java program. A public class Salaries {
class consists of data fields and methods that operate on public float monthly
the fields. A class defines a group of objects with salary, totalSalary:
similar attributes and common behaviour and relation- public float
ships. A class is used to create objects as its instances. findTotalSalary ( ) { };
It has instance and static fields and methods. }

Inheritance Java class inherits members when a Java class is extended public class
from a parent class called super class. The inherited AccountDetails extends
instance fields and methods can be over-ridden by BankDetails {..};. Theclass
redefining them in extended class using same name, AccountDetails will inherit
arguments and argument-types. Methods can be members of class BankDetails.
overloaded by redefining them for different numbers or
types of arguments.

Intepizce Interface has only the abstract methods and the public class
corresponding static data fields and the methods do not AccountDetails extends
have implementation in the interface. A Java class which is BankDetails implements
interfaced to an interface implements the abstract methods  InterestComputations{..}.
specified at the interface.

(Contd)




Embeddedsj#ams

Java Program Explanation Example(s) of its use

Element ’

Data types Java class uses primitive data types: byte (8-bit), short byte portData; /* 8-bit
(16-bit), int (32-bit), long (64-bit), float, double, unicode data ¥/ short counts; /* ]6:bit
char (16-bit). Java class uses reference data types. A count data */ int num Tic

can be to the array type in which there are groups of eMailId; /* account Numbgr and
objects as array elements. email ID as String class objects */
Exception Java has built-in exception classes. The occurrences of  java.lang.ArrayIndexOutOf
exceptional conditions are handled when exception is BoundExceptions: at
thrown. It is also possible to define exception conditions addArray (... This $ an

1’
reference can be to the class type in which there are groups  /* 32-bit number of clock ticks */
of fields and methods to operate on the fields. A reference String accountNum,

in a program so that exceptions are thrown from try block  exception. javal.lang pa¢kage
codes and caught by catch exception method . has an Object java.lang.Throwable.
(Section 4.2.2). We can also define exceptions|in try
{..} catch (Exception el){ }
Finally { }; (Example 4.6).

5.7.2 Java Programming Advantages
Java has advantages for embedded programming as follows:

1.
2.

3.
4.

10.

5.7.3 Disadvantages of java

Java has following disadvantages for embedded programming as follows:

Java is completely an OOP language. Java program starts with classes. Application program consists
of classes, objects and interfaces.

There is a huge class library on the network that makes program development quick.

Java has extensibility.

Java has in-built support for creating multiple threads. It obviates the need for an OS-based scheduler
for handling threads.

Java generates byte codes. These execute on an installed JVM (Java virtual machine) on a machine.
Virtual machine takes the Java byte codes in the input and runs on the given platform (protessor,
system and OS). [Virtual machine (VM) in embedded systems is stored at the ROM." I'herefore, Java
codes can host on diverse platforms. Platform independence in hosting the cory led codes permit
Java for network applications.

. Platform independence gives portability with respect to the processor and OS used. Java is con 1dered

as write once and run anywhere.
Java is the language for most Web applications and allows machines of different types to comm nicate
on the Web.

Java is easier to learn by a C++ programmer.

Java does not permit pointer manipulation instructions. So it is robust in the sense that memory leaks
and memory-related errors do not occur. A memory leak occurs, for example, when attempting to
write after the end of a bounded array.

Java does not permit dual way of object manipulation by value and reference. There are nq struc,
enum, typedef and union. Java does not permit multiple inheritances. Java does not permit ator
overloading except for the ‘plus’ sign used for string concatenation.




Progr%ﬁ?ing Concepts and Embedded Programming in C, C++ and Java 267

1. AgJava codes are first interpreted by the JVM, it runs comparatively slowly. This disadvantage can be

bvercome as follows: Java byte codes can be converted to native machine codes for fast running using

) t-in-time (JIT) compilation. A Java accelerator (co-processor) can be used in the system for fast
cade-run.

2. Jawabyte codes that are generated need a larger memory. An embedded Java system may need a minimum
ofl 512 kB ROM and 512 kB RAM because of the need to first install JVM and run the application.

E (Java 2 Micro Edition) or Java Card or Embedded Java helps in reducing the code size to 8 kB
for the ushal applications like smart card. How? The following are the methods.

1. Uke core classes only. Classes for basic run-time environment form the VM internal format and only
. programmer’s new Java classes are not in internal format.
ovide for configuring the run-time environment. Examples of configuring are deleting the exception
hgndling classes, user-defined class loaders, file classes, AWT classes, synchronized threads, thread
'gtoups, multi-dimensional arrays and long and floating data types. Other configuring examples are
adding the specific classes—datagrams, input, output and streams for connections to network when

gate one object at a time when running the multiple threads.
use the objects instead of using a larger number of objects.
‘Use scalar types only as long as feasible.

JavaCard, EmbeddedJava and J2ME are three versions of Java that generate a reduced code size. J2ME
provides|the optimized run-time environment. Instead of the use of packages, J2ME provides for the codes
for the, cpre classes only. These codes are stored at the ROM of the embedded system. It provides for two
alternatiye configurations, connected device configuration (CDC) and connected limited device configurations
(CLDC){CDC inherits a few classes from packages for net, security, io, reflect, security.cert, text, text.resources,
util, jar and zip. CLDC does not provide for the applets, awt, beans, math, net, rmi, security and sql and text
packages in java.lang. There is a separate javax.mircoedition.io package in CLDC configuration. A PDA
(persona) digital assistant) or mobile phone uses CDC or CLDC. »

Therd is scaleable OS feature in J2ME. There is new virtual machine, KVM as an alternative to JVM. When
using th¢ KVM, the system needs a 64 kB instead of 512 kB run-time environment. KVM features are as
follows:

1.}

se of following data types is optional. (a) Muiti-dimensional arrays, (b) long 64-bit integer and (c)
oating points.

rrors are handled by the program classes, which inherit only a few needed error-handling classes
om the java I/O package for the exceptions.

se of a separate set of APIs (application program interfaces) instead of JINL JINI is portable. But in
embedded system, the ROM has the application already ported and the user does not change it.

4. There is no verification of the classes. KVM presumes the classes as already validated.

5. There is no object finalization. The garbage collector does not have to perform time-consuming changes
in the object for finalization.

6. The class loader is not available to the user program. The KVM provides the loader.

7. Thread groups are not available.

8. There is no use of java.lang.reflection. Thus, there are no interfaces that do the object serialization,

ebugging and profiling.

i
|
i
l



268 Embedded Bystems

J2ME need not be restricted to configure the JVM to limit the classes. The configuration can be
by profiler classes. For example, MIDP (mobile information device profiler) is a profiler class
devices. A profile defines the support of Java to a device family. The profiler is a layer between the

gmented
r mobile
plication

and the configuration. For example, MIDP is between CLDC and application. Between the device and

configuration, there is an OS, which is specific to the device needs.
A mobile information device has the following.
1. A touch screen or keypad.
2. A minimum of 96 X 54 pixel colour or monochrome display.
3. Wireless networking.
4. A minimum of 32 kB RAM, 8 kB EEPROM or flash for data and 128 kB ROM.
5. MIDP used as in PDAs, mobile phones and pagers.

MIDP classes describe the displaying text. It describes the network connectivity. For example, HTTP
(Internet Hyper Text Transfer Protocol). It provides support for small databases stored in EEPROM or flash

memory. It schedules the applications and supports the timers.

An RMI (remote method invocation) profiler is an exemplary profiler for use in distributed envifonments.

5.7.5 JavaCard and Embedded Java

A smart card (Section 1.10.4) is an electronic circuit with a memory and CPU or a synthesized VLBI circuit.
Itis packed like an ATM card. For smart cards, there is Java card technology. (Refer to http:// www.java.sun.com/

products/ javacard.) Internal formats for the run-time environments are available mainly for the few

classes in

Java card technology. Only one applet can run and each applet is stateless. Java classes for connectxom

datagrams, input, output and streams, security and cryptography provide the environment.

There is restricted runtime environment. A smart card simple application uses a JavaCard. The Java advantage

of platform independence in byte codes is an asset. The smart card connects to a remote server.
stores the user account past balance and user details for the remote server information in an encrypt
It deciphers and communicates to the server the user needs after identifying and certifying the
intensive codes for the complex application run at the server.

For EmbeddedJava, refer to http://www.sun.java.com/embeddedjava. It provides an embedd
environment and a closed exclusive system. Every method, class and run-time library is optional.

Java objects bind the state and behaviour and are instances of a Java class. EmbeddedJava is a Java!
which makes large program development simpler by providing complete OOP features in Java.
configured to minimize memory needs and run-time overheads in the system. Embedd
programmers use Java in a large number of readily available classes for the IO stream, network and
Java programs possess the ability to run under restricted permissions. JavaCard is a technoloﬁ
smart cards and is based on Java.

The card
d format.
ser. The

run-time

drsion
JVM is

di system
geturity.

for the

@ Summary

3
§
§
H

< |

¢ Programming in the assembly language gives the important benefits of precise control of the processors 1§1temal

devices and complete use of processor-specific features in its instruction set and addressing modes.




Pfog’ramming Concepts and Embedded Programming in C, C++ and Java

Program in a high-level language gives the important benefits of short development cycle for a complex system
Bind portability to system hardware modifications. It easily makes larger program development feasible.

C language support to in-line assembly (fragments of codes in assembly) gives the benefits of both.

The C program uses various instruction elements, preprocessor directives, macro and constants, including of the
source files and header files and functions. Basic C programming elements are the data types, data structures,
modifiers, conditional statements and loops, function calls, multiple functions, function queues and service routine
queues.

Infinite looping is a greatly used feature in embedded systems, as it keeps a task or system ready for execution
whenever passed a message or signalled to run.

“The C function arguments pass the variable values as well as pass reference to the functions, pointers, NULL
pointers and function pointers.

Queue is an important data structure used in a program. The queue data structure-related functions are ‘constructing’
8 queue, ‘inserting’ an element into it, deleting an element from it and ‘destruction’ of the queue. A queue is a FIFO
data structure. Queues of bytes play a vital role in a network communication or client server communication also.
Queuing of pointers to the function on interrupts and later on calling the functions from this queue is a better

* | approach (programming model) as it provides the use of short execution time ISRs.

 Use of “stack’ is very frequent for saving the data in case of interrupts or function calls. Stack-related functions
‘are: ‘constructing’ a stack, ‘pushing’ an element into it, popping an element from it and ‘destruction’ of stack.
The “list’ and priority-wise ‘ordered list’-related functions are ‘constructing’ a list, ‘inserting’ an element into it,
finding an element from it, deleting an element from it and ‘destruction’ of the list. One exemplary application is
a list of real-time clock interrupts-driven software timers. Another is the list of ready tasks for scheduling the
‘multiple tasks.

o| C++ provides all the advantages of C as wall as OOP. Its code size can be reduced by optimizing the generated

codes as follows: (a) Declaring private as many classes as possible. (b) Using char, int and boolean (scalar data
‘types) in place of objects (reference data types) as arguments and use local variables as much as feasible.
¥(c) Recovering memory once already used by changing reference to an object to NULL. (d) Selectively de-
configuring certain C++ features to get less run-time overhead and less run-time library use. (e) Selectively
‘removing the features of template, run-time type identification, multiple inheritances, exceptional handling, virtual
:base classes, 10 streams and foundation classes.

. o| Java provides the benefits of extensive class libraries availability, modularity, robustness, portability and platform

independence. J2ME is Java 2 Micro Edition, which configures and profiles for the small devices. Java Card and
| Embedded Java is used in smart card and small embedded devives.

Keywords and their Definitions

A named set of codes that has a number of members — variables, functions, etc.
so that the objects can be created from it. The operations are done on the objects
by passing the messages to the objects in OOP. Each class defines a logical
group with identity, state and behaviour specifications.

:dhss libraries . Classes for a number of applications like exception, encryption, security, may

be provided after thorough debugging and testing for using these in the
requirements. Use of class libraries speeds up program development cycle.

x: structure + A multi-element structure that can be referenced by a common name (identity).

ata type : Type of data for a variable, for example, an integer, and on which only a defined
: set of operations can be performed.




270

Development cycle

Exception handling

Foundation classes
Function queue
Header file

High-level language

In-line assembly
Include file

Infinite loop

10 stream

Local variable
Memory optimization

Modularity
Multiple inheritance

NULL

Object-oriented programming

Ordered list

Passing the reference

Embedded Sy%ms

A cycle of coding, testing and debugging. A number of cycles may be
before finalizing the source codes for porting in the embedded system !

condition. For example, buffer unable to store any further byte. A prog "
thinks of the exceptional conditions and provides for the functions and
calling on occurrence (throwing) of the exception. 4

Classes meant for GUIs (e.g., button, checkbox, menu and so on.) f
A queue of pointers for the functions awaiting execution later. .

File containing codes (mostly standard functions) for the user. For examyj|
file math h’ contdxmng codes for the mathematlcal functlons

cycle for acomplex system, OOP, data types and many features such as po
to system hardware modifications.

the benefits of processor-specific instructions and addressing modes.

File that is included along with the user source code before the compila
the compiler.

A loop from the program that cannot exit except on interrupt or on a chay

that they are sent. An IO stream object does the writing to a file or prmteg
a queue or to a network device. '

A data structure into which elements can be sequentially inserted and 3
not necessarily in FIFO or LIFO mode. Each element has a pointer also ¥

points to the address of the next element at the list. Last element points to N
A top (head) pointer points to its first element. }

A variable defined within a function which no other function can use or

total number of CPU cycles, and thus, the total energy requirements.
A set of codes are said to be modular if they are usable in multiple applicad

A daughter (derived class) inheriting the member functions from more tharfof..
class. 1

A memory occupied by an element or object or data structure can be

pointing it to the NULL.
A programming method in which instead of operations on data typei

then set the pointer to next). It is done seauentially, starting from top.

structures, variables and functions as individuals, the operations are done 08 the
objects. A class creates the objects in C++ and Java. n

4
A priority-wise ordered list in which it is easy to delete operations (reag{agd



i
H

Prqghénming Concepts and Embedded Programming in C, C++ and Java 271

& . function argument becomes modified when operated and the function may get a

i different argument value back after return from the calling function. The argument

value does not save on the stack when that passes by its reference.

Pl;lsaing the value :  From a function, a value is transferred to another function but the same value is
iy reassigned to the original function after return from the called function. Before

‘ passing, the argument values saves on the stack and retrieves back on return

from the function.

A code that can port on different machines and OSs.

A code that can be ported in another program by suitable configuration changes.

Program statements and directives for the compiler before the main function to

include files and define global variable, global macro (section of code), new

1 data type and global constants.

P‘vt : A variable belonging to a specific class and not usable outside that class.

g, .

A data structure into which elements can be sequentially inserted and deleted in
FIFO mode. It needs two pointers, one for the queue tail (back) for insertion and

?, the other for queue head (front) for deletion (read and point to next element).
Re nce data types . Array and strings are examples of reference data type.
RoBustness : A program is said to be robust if it can function without errors like stack overflow

H

and out of memory errors. Avoiding pointer manipulation instructions, frequently
freeing the memory if not needed later and using exceptions, make a code robust.

R&uﬁime library :  Alibrary function that links dynamically at the run time. Run-time links increase
i H run-time overheads and out of memory errors can arise.

l&l -Cune overhead : Use of RAM for data and stack is called run-time overhead.

S‘i: #r data types :  The character, integer, unsigned integer, floating point numbers, long and double
; t are called scalar data type. Unlike an array, data consist of one single element.
Shqk : A data structure in which elements can be pushed for saving in certain memory
b blocks and can be popped in LIFO mode. It needs one pointer for the stack head
E ; (top) for popping (read and point to next element) as well pushing.

.S?Me code engineering tool : A power tool to engineer source codes and also to help in debugging and
performance analysis of the codes in high-level languages.

1} plate : A set of classes using which new classes are built.

Wral base classes : A special type of class provided in C++.

o

Review Questions

hat are the criteria by which an appropriate programming language is chosen for embedded software of a given
ystem?

2. What is the most important feature in C that makes it a popular high-level language for an embedded system?

3. What is the most important feature in Java that makes it a highly useful high-level language for an embedded
ystem in many network-related applications?

4. What is the advantage of polymorphism, when programming using C++?

5. y do you break a program into header files, configuration files, modules and functions?

6. sign a table to give the features of top-down design and bottom-up design of a program.



272

17.
18.
19.
20.
21.
22.

23.
24,

25.

. What are the advantages of using freeware, GNU C/C++ compiler?
10.
11.
12.
13.
14.
15.
16.

Explain the importance of the following declarations: static, volatile and interrupt in embedded C.

Embedded Syéems

How and when are the following used in a C program? (a) # define (b) typedef (c) null pointer (d) passing the

reference (e) recursive function.

Why do you need a cross-compiler?

Why do you use infinite loop in embedded system software?

What are the advantages of re-entrant functions in embedded system software?
What are the advantages of using multiple function calls in cyclic order in the main?
What are the advantages of building ISR queues?

What are the advantages of having short ISRs that build the function queues for processing at a later time?
How are the queues used for a network?

&’/' Practice Exercises

Why do the features in C++ make the code lengthy when using template, multiple inheritance (deriving ja class

from many parents), exceptional handling, virtual base classes and IO streams? Tabulate the reasons.
Write a device driver for a COM serial line port in C including in-line assembly codes.

What are the most commonly used preprocessor directives? Give four example of each.

How does the use of a macro differ from a function? Explain with exemplary codes.

Write program C codes for a loop for summing 10 integers with odd indices only. Each integer is 32 bit
unroll the loop and write C codes afresh. Compare the code length in both cases.
A set of images in a video frame are to be processed. Which data structure will be best suited for storing the
before compressing in an appropriate format?

How does combining two functions reduce the memory requirement? Explain with four examples.
Consider the format of PPP (point-to-point protocol). Write a C program to transmit PPP data frames encap
4096 data bits. Bits are to be transmitted in a sequence of 32-bit integers stored in memory as in big-endian
Give two programming examples each in an embedded software, which employs data structures: (a
(b) queue (c) stack (d) list (e) ordered list (f) binary tree.

5. Now
inputs
lating

jormat.
array




Program Modeling
Concepts

1. Two models for programming languages are

procedure and object oriented programming (0O0P).

; 2. Procedure-oriented language examples are ALP and
C. The C language provides for functions and main

' C function defines the first function that executes and

_ the other functions are called from the main. A
function can call another function. There can be

» nesting of function-calls. There can also be multiple

@ f function calls within a function. (Example 5.12,

u Section 5.4.7).

e 3. Programming elements in C are preprocessor

e directives, modifiers, conditional statements and

dl ' loops, pointers, function calls, multiple functions,

P function pointers, function queues and ISRs. Program

{ uses data of various types and with various structures:
arrays, queues, stacks, lists and trees.

. OOP language examples are C++ and Java. C++ sup-
port object-oriented as well as procedure-oriented
codes. Java is purely object-oriented. Object is a
reusable software unit and using these units the
reusable software components are built. Large com-
plex software can be easily built using the software
components.

T

5N




(3

@2~ 2% N Wb

O I L T T I

A standard design practice adopted by engineers is to use a model when sofutions to
problems are to be found. The events polling based programming, concurrent processes
programming, sequential programming and OOP are the programming moyels most
often used. The objective of this chapter is to learn the important concepts of program
modeling. The following concepts of program modeling are explained.

1. Data flow model using data flow graph and control data flow gr"
2. State machine model. '
A powerful modeling language is UML based on objects oriented design. UML
JSulfills the need for a unified language, which can model many types of frocesses,
classes, objects, activities, designs and development process approaches. |t should
also be understood. An objective of this chapter is to learn the following.
1. UML basic elements. !
2. UML diagram.
Example of a use of UML is modeling a software implementation.
Embedded systems may be considered in concurrent processing model dis systems
with concurrently running processes and the processes may require teal-time
constraints. Concurrent process model and interprocess communicatiop will be
described in Chapter 7.

Xl
1

~ 6.1 PROGRAM MODELS

the queue and then the functions executed in FIFO order.

Example 6.1
Figure 6.1 shows a sequential program model for ACVM (Section 1 5 The
following functions run in sequence. ;’ ;

1.. Run function get_user_input () for obtaining input for the choice of ¢gJofolate

from the child. q
2. Run function read_coins ( ) for reading the coins inserted into thé Al
for the cost of chocolate. '
3. Run function deliver_chocolate ( ) for delivering the chocolate. { |
4. Run function display_thanks ( ) for displaying ‘Collect the nice chbcblate.
Visit again!’




Prmm Modeling Concepts 275

¥

function get_user_input ()
Run code
return

N

1| Sequental
function calls function read_coins ()
while (){ Run code
get_user_input (); return

read_coins { );

1 deliver_chocolate ( ); function deliver_chocolate ( )
g display_thanks ( )}; Run code
, ~hank ;

{ function display_thanks ()
Run code
refurn Y time

n e

Fig. 6.1 Sequential programming model of an ACVM

3} Data flow model: Data flow graphs, abbreviated as DFGs and control data flow graphs, abbreviated as
CDFGs are used for modeling the data paths and program flows of software. A program is modeled as
handling the input data streams and creating output data streams. The models based on data flow
model concept will be described in Section 6.2.
4| State machine model: A programming model is that there are different states and the model considers
a system as a machine, which is producing the states. Example 5.9 considered different states, which
have different displayed menus and the program action depended on the state. Program sequentially
polled for the screen state and menu choice selected by the user. Example 3.6 showed how a key
marked 5 can produce on pressing different states (0, 5), (1, 5), (1, i), ..... The transition of a key
occurs if it is pressed again within an interval. The state of the key undergoes in a cyclic fashion as:
1,5 > 1,j) =1,k > (1, 1) > (1 5) - (1, j). The models based on state machine concept will be
described in Section 6.3.
5| Concurrent processes and interprocess communication model: A programming model is that there are several
" | concurrent tasks (or processes or threads) and each task has the sequential codes in infinite loop. A task
sends a message or signal for another task. A task, which gets a message or signal, runs and the remaining
tasks remain in the blocked state. Example 5.8 gave the exemplary codes. Example 6.2 gives the concurrent
 process model based program for the sequential program model in Example 6.1. The model of concurrent
processes, tasks or threads and interprocess communication between the concurrent processes will be
described in detail in Chapter 7.

ple 6.2

are 6.2 shows a program model based on concurrent running of the processes in ACVM
fon 1.10.2). Assume that the program consists of following processes, which can run concurrently.
1§} Process get_user_input () for obtaining input for the choice of chocolate from the child and
L 11 signalling to process read_coins start.

4 Process read_coins () wait for signal get_user_input ( ) and start reading on signal from
& for reading the coins inserted in the ACVM for the cost of chocolate. Post a signal to process deliver

LR 3
@ %

© chocolate to start and also post a signal to process display_wait () to start.




a3

276 ) Embedded Sys*qgns

Concurrent ISR GUI interrupt { ) > process get_user_input () 3
Processes create Buncode = 7 wait GUlinterrupt Msg i
create process Signal GUinterrupt Msg Bun code ;
get_user_input ; Signal Sread_coins !
create process read_coins ¥ , ] 1
H e wh
s:r)eate process process read_coins () »| process deliver_chocolate () |
deliver_chocolate ( ); wait Sread_coins - wait Sdeliver_chocolate 13 :

create process Buncode Bun code
display_thanks ( ); Signal Sdeliver_chocolate Signal Sdisplay_thanks  :§
create process Signal Sdisplaywait ¢ *—I
display_wait ( );} Y ‘ |
} process display _wait () »| process display_thanks () 1{
wait Sdisplay_wait wait Sdisply_thanks i
— Arrows show inter-process Bun code_for 'Walt few Bun code_'Collect the nice /§ |
communications momentsl” - chocolate. Visit again!' o
Wait Sdisplay. thanks Wait Sdisplay_wait iy
Signal Sdisplay_thanks - Signal Sdisplay_wait

Fig. 6.2 Concurrent processing program model of ACVM

3. Process deliver_chocolate () wait for signal from read_coins () and starts delivering the
chocolate and post a signal to display_thanks () to start. ;

4. Process display_wait () waits for signal from read_coins () and starts displaying ‘Wai
few moments!” and then wait for signal for display_thanks ().

5. Process display_thanks () waits for signal from deliver_chocolate () and
from display_wait () and starts displaying ‘Collect the nice chocolate. Visit again!’

6. OOP model: Object-oriented language is used for the following features:

(a) When there is a need for reusability of the defined object or set of objects that are compmon
within a program or between many applications; when there is a need for abstraction ang?
by defining objects by inheritance and polymorphs, new objects can be created. There i
encapsulation within an object.

(b) An object is characterized by its identity (a reference to it that holds its state and behavio
its state (its data, property, fields and attributes) and by its behaviour (operations, meth
methods that can manipulate the state of the object).

(c) Defining the logically related group makes a class. Class defines the state and behaviour.
internal user-level fields for its state and behaviour. It defines the methods of processi
fields.

(d) Objects are created from the instances of a class. A class can thus create many objects by
copying the group and making it functional. Each object is functional. Each object can
interact with other objects to process the states as per the defined behaviour. A set of - ~ 4
classes and their objects then gives application-program.

|
Example 6.3 : §

This example gives an object-based model instead of the ACVM sequential program model and conc:
processes-based model given in Examples 6.1 and 6.2, respectively. Figure 6.3 shows classes and ob




Progrq%‘mLModeling Concepts 277

itance and interface features in a program model based on the ACVM (Section 1.10.2). The

followlingg can be the classes and objects.

1. C ass GUI for graphic-user interaction. It has two methods display_menu () and
¢t _user_input () and for obtaining input for the choice of chocolate from the child. It has
néthod set_choice () to set the choice selected.
2. tlass Read ~uins () forreading the coins inserted. It has a method read (), to read one, two and
ﬁ ¢ rupee co:ns from three ports and a method sum () for summing the total coins.
3. b ass Deliver_chocolate.It has methods, get_choice ()to getthe choice and deliver
{ } for delivering the chocolate.
4. C}ass MsgDisplay. It has methods display _wait () and display_thanks () for
diSpiaying wait and thank messages.
Class|GUT is used to create GUI objects as multiple instances of GUL Class MsgDisplay is used
to creatd message display objects as multiple instance of wait and thanks messages. Class MsgDisplay
can be fterfaced to an interface screen_size (), which has an abstract method screen_size ().
The abshfact method screen_size () is implemented in class MsgDisplay i
Extendibg class MsgDisplay can specify a new class MsgTime_Display. Extended class
MsgTi e_Display inherits all attributes and methods of class MsgDisplay. Extended class have
another jmethod display_time_date () for displaying time and date also with each message. Extended
class cafy interface to interface set_display_period. MsgTime_Display will now implement the
methddlset_display period () to setdisplay period of 1 or 2 minutes for thanks and wait messages.
In the objected-oriented approach, there is reusability of defined objects from GUI and a set of objects
that arelcommon within a program or between the many applications are created. Also we have abstract
method, screen_size ().and set_display_period which are defined in the interfaces but
implemiented in the interfacing classes. There is inheritance in the new objects, which are created by
extendihg the class MsgDisplay. There is encapsulation of methods and attributes in the class

and objects.

UML|is modeling language based on the object-oriented model. Section 6.5 will describe the UML.

6. DFG MODELS
6.2.1 Data Flow Graph
A data flow means that a program flow and all program execution steps are determined specifically only by

the data.[The software designer predetermines the data inputs and designs the programming steps to generate
the data putput. For example, a program for finding an average of the grades in various subjects will have the
data inpjits of the grades and data output of the average. The program executes a function to generate the
appropripte output. The DFG model is appropriate to model the program for the average.

How Hoes data flow in a program? Data that is input after the operations in the program becomes data that
is output after a data flow. A diagram called the DFG represents this graphically. A DFG does not have any
conditiohs within it so that the program has one data entry point and one data output point. There is only one
independent path for the program flow when the program is executed.

A cirfle represents each process in DFG. An arrow directed towards the circle represents the data input (or
set of inputs) and an arrow originating from the circle represents a data output (or a set of outputs). Data input



Embedded%yhtems

along an input edge is considered as token. An input edge has at least one token. The circle reprdsents the
node. The node is said to be fired by the tokens from all input edges. The output is considered by the outgoing
tokens, which are produced by the node on firing.

Class MsgDisplay %

String: char [ ]; ’
String: 2
Msgitems1, 7
StrLine1,

Msgitems2,

StrLine2;

Color: textLlneCoIor #

Class GUI
Unsigned byte [ ]: keycode Class Read_Coins
String: char [ ]; - -
String: Menultems; Unsigned byte [ ]:
Menultems: StrLine1, Strline2, coinAmount
StrLine3, StrLine4; readCoin ( );
Color: textLineColor, sum ();
cursorTextLineColor,
smeentckgroundColor;
Cursor: line, coloredBar; Class
display_menu ( ); Deliver_chocolate
get_user_input ( ); :
set_choice ( ); get_choice ();
enterClick ( ); deliver ( );

abstract screen sizegs‘
set_display penod(;z ;
¥

)

read_port: Read_Qoins

displayThanks: MsgDisplay

coinAmount:
coint, coin 2, coin 5

displayWait: MsgDisplay

Class GUI j

1

1

| Class GUI_ACVM_User ]

| Class GUI_ACVM_Owner |

Class MsgDisplay |

1

[ Class Display_time_date I [

Class User_inputs —I

Fig. 6.3 Classes, objects, inheritance and interface features in OOP model based ACVM grogram

When there is only one set of values of each of the inputs and only one set of values of the outputs for the
given input, a DFG is also known as the ADFG, (acrylic data flow graph). All inputs are instantaneously
available in APDFG. Examples of non-acrylic data input are as follows: (i) an event; (ii) a status ﬂag setting

in a device and (iii) input as per output condition of the previous process.

Example 6.4 gives a DFG during a DSP algorithm.

Example 6.4

Figure 6.4 shows a DFG of the following expression for an output sequence yq of a “finite impulse
(FIR) filter’. An n-th filtered output sequence, y,=X (a;.x, ;) where the sum is made for i = 0, by
N-1.] Figure 6.4(a) shows the DFG for a process for the sixth FIR sequence and Figure 6.4(b) shw
DFG for a set of processes of the same sequence. Following are the points notable for the p

calculating yg = ag.Xg + a;.Xs + 85X +23.X3 + 84.X; + a5.X, +ag.Xg-




Progr% iModeling Concepts

I} re is one input point to the process represented by the circle for calculating ye.

fThere is one output point for y.

here is only one memory address and variable for each coefficient and each filter input. There
, :énly one value of each of the six inputs for x and there is only one value of each of the
i_"ﬂ'lcnents a. (DFG is therefore also the ADFG.)

der in which inputs are obtained and the summation is done is also immaterial.

// \\Data input

Output

Fig. 6.4| (a) Data flow graph (DFG) for a process for the sixth finite impulse response (FIR) sequence
(b) DFG for a set of processes of the same sequence for an FIR filter with 6 inputs and 6
coefficients

It mugt be noted from Example 6.4 that there is no complexity in the process for y¢. DFG models helpina
simple cpde design. A simple code design can be defined as that in which the program mostly breaks into
DFGs. A DFG models a fundamental program element having an independent path. It gives that unit of a
system, which has no control conditions and thus a single path for the program flow. A unit gives the program
context and helps in analysing a program in terms of complexity. A more complex program would have a
lower nymber of DFG processes than a simple program.

Fighra 6.5 shows a DFG model for the program for saving a picture in a digital camera.

i
i

task read frame

status and data of task for Cobo>

all x and y pixels saving the ?o?cesso

of image frame —  dataof pixels —> a ndc : ubtrmpuacnm 9

area and un-exposed at a frame et in "90

columns at CCD memory buffer A e‘spcclul

CO-processor area pix

T task JPEG

rADC scanned data l compression

Fig. 6.5 DFG model for program for saving a picture in a digital camera




280 J Embedded: Bystems

DFG model program translates and executes as a single-process sequential model program. A program
executes as per the input (message or event or set of events) and the input determines the outpat.

Qo_ftware implementation becomes greatly simplified when using the DFGs because in the DFG model, there
is & single data-in point and a single data-out point, with a process or set of processes that are repre; AP
circle(s). Programming tasks are simplified by representing the code for each process by a circle, gs#
data input from incoming arrow(s) and generating data output along outgoing arrow(s). When the as s
to an input is fixed in a DFG, it is also called ADFG. Programming complexity is minimized by mddeling a
program in terms of as many DFGs as possible and the use of as many ADFGs as possible.

6.2.2 Control DFG Model

A control flow means that specifically only the program determines all program execution steps and the flow
of a program. The software designer programs and predetermines these steps. How does one design a pfocess that
incorporates controls for taking decisions during the data operations and data flow into a program? A prpcess may
have the statements that control the inputs or outputs. It may have loops or condition statements in-between (recall
Section 5.4.5). Data that is input generate the data output after a control data flow as per the controlling donditions.
Output(s) depends on the control statements for various decisions in a process. A CDFG is a diagrdm, which
graphically represents the conditions and the program flow along a condition-dependent path.
The CDFG diagram also represents the effect of events among the processes and shows which jprocesses
are activated on each specific event. Here, a variable value changing above a limit or below a limit or falling
within a range is also like an event that activates a certain process.
A circle also represents each process (called node) in a CDFG. A directed arrow towards the circle fepresents
the data input (or set of inputs) and a directed arrow from the circle represents a data output (or a set of
outputs). A box (square or rectangle with its dlagonal axes horizontal and vertical) may represent a ¢ondition,
for example in Figure 6.6(a). Alternatively, a condition can be marked (or denoted) at the start of th¢ directed
arc or arrow. A directed arrow from the box or a marked starting condition determines the action td be taken
when the condition is true.

Example 6.5

Figure 6.6(a) shows the controlling input (decision) nodes by the test condition specifying boxes,) af
data inputs to a CDFG for an FIR filter with 10 inputs and 10 coefficients [recall Example 6.4 for
of various terms in the n-th filtered output sequence, y, = Z(a;.x,_;); where the sum is made for i
.» 9]. Following are the points notable for the process of calculating y,. There is one input poi
process represented by the circle for calculating y,. ,
1. There is one output point for y,. There is only one memory address and variable for each co
and each filter input. These are the variables, i n, s and e, which take multiple values dui
program flow.
2. The order in which inputs are obtained and summation is done does matter. :
Figure 6.6(b) shows the controlling input in the In_A_Out_B program of Examples 4.1 and 4.3. Here,
instead of boxes, the condition is marked at the start of the arc. *
There is increased programcomplexity in the process for y, The CDFG model helps in understandip
all conditions and in determining the number of paths a program may take. It also shows us that thel |
software must be tested for each path starting from a decision node, and helps in analyzing the ‘| j
program in terms of complexity.

:}", .




P&dﬁi’am Modeling Concepts

model program translates and executes as a concurrent process model program. A controlled decision
as the message or event or set of events determine, which process to execute at an instance.

Next CDF
o

Interrupt System
Port A enable
Interrupt
Not masked

Execute
Functions

Port A (il) to (v)

Interrupt

(b).

Fig.6.6 (a) Data inputs and controlling input (decision) nodes shown by test boxes in a Control
data flow graph for a finite impulse response filter with 10 inputs and 10 coefficients
(b) Controlling input conditions marked in the In_A_Out_B programs in Examples 4.1 and
4.2 (instead of a box, the condition is marked at the start of an arc)

tware implementation becomes simplified when using the specifications of the conditions and decision
ofies in the CDFGs that represent the controlled decision at the nodes, and the program paths (DFGs) that
‘%raversed consequently from the nodes after the decisions.

6 .3 Synchronous Data Flow Graph (SDFG) Model

Whén there are number of tokens (inputs) required for a computation to generate more tokens (outputs) in a single
firig, the data flow is said to be synchronous. The SDFG model is as follows. [Refer E. A. Lee and
D. G. Messerschmitt, ‘Static scheduling of synchronous data flow’, IEEE Transactions on Computers, Feb. 1987.]
Lét hn arc represent a buffer in physical memory. The arc can contain one or more initial tokens with the delays.
A taken does not fire the computations at a vertex till it is received at the vertex. Vertices (circles) in this graph are
calléd the actors. Actors do the computations. An actor also represents a complete DFG within itself. An edge
between the vertices (arcs with an arrow for the direction) represents a queue of output values from one vertex and
a queue of input values to another vertex. Edges carry the values from one actor to another.
t X and Y be two sets of instructions that once fired (started), do not need any further inputs from
any|source during the computations. Let X generate the output values (tokens/data) a, b and c. Let Y get
the fnput values (tokens/data), a, c, i and j and let i have a delay. The number of inputs to Y need not equal



Embedded Sy: ‘

the number of outputs from X. Y gets additional inputs and does not need all the outputs from X.
These computatlons and data are now modelled by a directed DFG that exists from X to Y. The number of

model. Then an initial token may also represent a delay that is shown by a dot on the edges of the SDFG. Hithere
is more than one initial token the number of initial tokens are mentioned on the dot (Figure 6.7). The i and j are
initial tokens for the vertex Y in Figure 6.7 which show that i has a delay.

A number of vertices may be present in a system. All
computations are static scheduled in SDFG execution at each
vertex (firing elements for the computations and creating
another set of output tokens). SDFG model program translates
into a sequential model program.

An SDFG model is like a DFG, but also models the delays as
well as the number of inputs and outputs. The edges directed
to the circle can be assumed to have a physical memory buffer
and till the buffer has the data, the computations do not fire.

jalso shown. The i is with
a delay (dot)

- 6.3 STATE MACHINE PROGRAMMING MODELS FOR
EVENT-CONTROLLED PROGRAM FLOW §

A state machine is a model in which it is assumed that there are states and state transition functions, which
produce the states. A state transition function is a function which changes a state to its next state.

Example 6.6 ; i

(a) Telephone system idle, receiving a ring, dialing, connected and exchanging messages. There}
five finite number of states.
(b) Consider states of a timer in running state. Figure 6.8 shows the states of timer by circles and
transition by arrows. The count input is the clock input. The changed count value is the output;
output function is the increment in the count value. The state transition function is the time-og
overflow when a predetermined numbers of count inputs are reached. A timer has four finite sf;
1d1e’, ‘start’, ‘running’ and ‘finished’. ,
. ‘Idle’ state starts state transition on loading an input, numTicks (number of ticks after whxc%;. tlre

timer finishes), _ i
2. ‘Running’ state: on each clock input for decrement, the count value decrements. it
3. ‘Finish’ state: program flows to the finished state. This is when the count value reaches 04 |
(c) A task has four finite states—idle, ready, running and finished [Figure 6.9(a)]. For output fromfrt e
state, which becomes the input to the next state, tokens (inputs) from the scheduler are ready flag
block flag. The tokens (outputs) to the scheduler are running flag, blocked flag and finish flag,

‘v,>




Pra&*n Modeﬁng Concepts |

1. An ‘idle state’ to the ‘ready state’ transition occurs when the RTOS schedules this task by
- sending a token (message) to it. Output from this state consists of saving the scheduler context
onto the scheduler stack.

2. The ‘running state’ has instructions being executed and the PC continuously changes as per the
program flow. .

3. Program flows tothe ‘blocked state’ whﬂa the seheduler pre-empts a task. It sends a token (message)
'}i  to the task. Output from this state consists of saving of the task context at the task stack.

‘\?}4. ‘Program flow to the ‘running state’ again occurs on a token from the scheduler and after retrieving
"}, the values from the stack.

:~ i%S The flow to the ‘finish state’ happens when the instruction reaches the end stage. The output is
“{i  amessage to the scheduler.

¢ 1.6. The flow to the ‘ready state’ mstead of ‘finished state’ ‘occurs when the tasks are in an

1> infinite waiting loop. .

¢ 1£7. The flow to the ‘idle state’ occurs when ‘4 message to the scheduler is sent by the task

. b¢ and the task is deleted from the ready list.

When is a system modeled as the states Timer Idle Timer Start  pecrement Timer Running
and state machine? Frequently, there are \ Load Input_ /" ™\ Input
inputs fto a program that change the state Num-Ticks o’/  Event \_/
of the ystems to a new state, and generate =] Output Output
outputs, which may also be the inputs for g Count = Num-Ticks Count = Count-1
the next state. Now it can be assumed that e Decrement
n a. odel the runnmg_ of the progr'am U‘ input Event When Count = 1
and itsjflow can be considered as running Output
of a hine generating the states. The Count=0
program flow can be modeled simply by Timeout Flag = Set

interstpte transitions (from one state to

anothgr) from next state transition-

functiéns (Moore model) or next output transition-functions (Mealy model).
Following subsections describes finite state machine model.

Fig. 6.8 States of a timer using finite states machine model

6.3.1 Finite States Machine (FSM) Model

FSM model states that there is finite number of possible states in a system and a system can only exist in one
of thege states at an instance. Figure 6.8 showed the states modelled as FSM of a timer since there are finite
number of timer states. Figure 6.9(a) shows how the states of a task can be modelled as a FSM (refer to
Sectichn 7.3 for understanding the concept of a task). Figure 6.9(b) shows the FSM states in a program model
CVM. There can be transition of the present state to the next state, which depends on the inputs and

Let a circle represent a state and let a directed arc (or an arrow) represent the program flow from a state to
anothér. When modelling a process as FSM, the software designer specifies the following for each state.



i

i

!
o

Task Idle  From Scheduler Task ready FRunning Task Running

Ready Flag lag = Set
58
e 5 Saved on Stack or Redefine Preempted by ‘? u":
&3 Stack Pointer and Register Higher Priority o2
33 Task- Window task g
£ € o
S3|  Finished Task-Running Task-Blocked | 8 £
85
ox
Restores from Blocked
Stack or Redefine Flag = Reset
Stack Pointer and Running Flag = Set
Register Window (a)
signal input Signal deliver

task
get_user_input
()

User interrupt

—> Arrows show state transition to next state on
a software interrupt signal for the transition

(b)

Fig. 6.9 (a) States in the finite states machine (FSM) of a task in a multi-tasking program (H) FSM

states in a program model of an ACVM

3. Finite actions (e.g., computations) during the state and finite set of outputs with their possible vz‘\)lres (or

tokens or event flags or status flags) and an output (action) function for the state that gives the
4. State transition function for each state to take it to the next state.
The steps that model or represent the states and interstate transitions in FSM data path are as foll
1. A transition to a new state occurs from the previous state on an event (input). The event may be

tputs.

ga

value of a certain parameter or the result of the execution of certain codes. A transition may be 3lso be
interrupt flag-driven (after a flag sets) or semaphore-driven or interrupt source servicing need-drive.

2. A state can receive multiple tokens (inputs, messages, flags interrupts or semaphores) from
state(s). A token (event) is used here as a general term that means either an input or event input.
input characteristic is that it is asynchronous (one never knows when an event may happen).
input may happen when there is setting or resetting of a flag. It may occur when there is: (i) a se

given or taken or (ii) some indication for a resource or signal or data item generated or (iii) completi
execution of a set of codes. (Refer Sections 7.7, 7.10 and 7.11 for meanings of semaphores and

ignal)

3. A state can generate multiple tokens (outputs, messages, flag interrupts or semaphores). An output or

set of outputs and variables identifies the next state on mapping the inputs, variables and prévious
states using the output state transition (action) function (Mealy model). A flag indicating the state




Pro‘r%' Modeling Concepts 285

&

condition or a set of codes being executed or a set of values of certain parameters identifies the next
state on mapping the inputs, variables and previous states using the next state transition function
(Moore model).

Whén the FSM model is represented graphically with circles and directed arcs, it becomes complex in the
case of|a complex process with a large number of states. FSM state table can then be helpful.

6.3.2 FSM State Table

To design a software using the FSM model, a state table can be designed for representation of every state in
its rov)s. The following columns are made for each row.

1. | Present state name or identification.
2. | Action(s) at the state until some event(s).
3. | The events (tokens) that cause the execution of the state transition function.
4. | Output(s) from the state output function(s).
5. | Next State.
6. | Expected time interval for finishing the transitions to a new state after the event.
Thd coding using each row can now be easily done as follows.
while (presentState) {action ( ); if (event = ..... ; token = .... )
{output = ...... . stateTransitionFunction ( )i };}
or
Switch (State)
Case presentState: action ( ); if (event = ..... ; token = .... )
{output = ...... ; stateTransitionFunction ( ); }:}’

Hefe presentState is a boolean variable, which is true as long as the present state continues and turns false
on trahsition to the next. The action () is a function that executes at the state. If certain events occur and
tokend are received (e.g., clock input in a timer), a state transition function, stateTransitionFunction, is executed
which| also makes presentState equals false and transition occurs to the next state by setting nextState
(a bodlean variable) equals true.

Example 6.7

¢ 6.10 shows the states, state transitions, events, outputs from state output function and finite
¥ r of state transitions of a mobile phone key ‘S’ of T9 keypad (Example 3.6). A mobile phone T
e ’s key marked 5 has five states. It undergoes transitions from initial state (0, 5) as follows: (0, 5) —
SL)->GL->A D135 -1, )). First state, variable s, = O represents initial key
ive state. When it is 1, it represents the active state. Second-state variable s, = 5 or j or k or 1 represents
;gi al character, which is accepted as output after 1-second delay. A transition occurs when
: Jﬁ d again within a period less than 1 second. The timer has count register, compare register and two
4g$%-TR (timer running) and TF (time compare output) flags. State transition occurs when key input interrupt
KF is equal to set or TF = 1. The transition on TF resets the key. The timer starts on key interrupt and
% gtimer is in ON state, timer-run flag TR equals 1. When the timer is off or timer time outs, TR = 0. When
ut = x, timer flag TF equals false before timeout. Timeout occurs when count x equals compare register
ydeid for 1 second. After 1 second, the TF equals 1. There are 12 finite number of states of the key and the



. Embedded Syptems

Key5
Interrupt

fiag = 1 or
c

if (keySinterruptflag == 1 && TR = 1 && TF == 0) then C = 1 else if
(TR=0TF = 1) then C = 0; /* TR = 1 means timer is running after
key interrupt, TF = 1 means timer timeout or outcompare */.

Fig. 6.10 The states, state transitions and finite number of state transitions in a
key ‘5’ in mobile phone T9 keypad

Example 6.8 ;
Make state table for FSM in Example 6.7. Table 6.1 gives the state table for the key ‘5’ in T9 keyp;ﬁd

FIEREPERSNNIES DR

Table 6.1 State Table for the Key ‘5’ in T9 Keypad

Present State Action  Events Next State Output
Key TR TF KF KF  Count Key TR TF KF
©, 5) 0 0 0 Wait 1 x’ (1€,5) 1 0 0
(1,5) 1 0 0 Wait 1 X (1, j) 1 0 0
1L 1 0 0 Wait 1 X (1, k) 1 0 0
1,k 1 0 0 Wait 1 X (11 1 0 0
(LD 1 0 0 Wait 1 X (1,5) 1 0 0
(1, 5) 0 1 0 - 0 0 (1, 5) 0 0 0
[{H)] 0 1 0 - 0 0 a3 0 0 0
(1,k) 0 1 0 - 0 0 (1, k) 0 0 0
1,n 0 1 0 - 0 0 an 0 0 0

Note: Count x” initial count register value, = x means counts greater than x” and less than a compare
register value set for 1 second time out. TR = 0 means timer stopped. TR =1 means timer running after
loading a value in compare register for capture time out after 1 second. TF = 1 means timer compare
time out. KF = 1 key press event. KF = 0 means key reset or inactive. '

Example 6.9

The C codes from Table 6.1 can be written as follows.
# define true 1
# define false 0




Fain Modeling Concepts 287

# defipe initialState ‘05000’

# deffige statel ‘15100’

# defipe state2 ‘1j100’

# deffigie state3 ‘1k100°

# defige stated ‘11100

# deffige stateS ‘15010’

# deffipe state6 ‘1010’

# defige state7 ‘1k010’

# deffige state8 ‘11010’

# defige state9 ‘15000’

# defipe state10 ‘1j000°

# deffige statell ‘1k000’

# defige state12 ‘11000’

il KeySFSM ( ) {

af [ ] state;

inifialState = “05000"
ifie (true) {/* An infinite loop */

. */
/% ction display (“x”’) shows character x on the screen and function cursor_next ( ) moves the
sS4t position to next when keyiing in an SMS text message. SWI is software interrupt instruction */

: ‘ Fok kKRR AR AR AR ARk kR AR Rk ok Rk Rk ok ok ook dook ook ook ook ok

SWI timerstart; /* Execute Interrupt routine to start the timer */
display (“5); State = Statel;}

' if (KF == 1) && Count == x)) {
SWI timerRestart; /* Execute Interrupt routine to restart the timer */
display (*j); State = State2;}

*}:**************************# *% k% Aeskokkokskokokodok ok kok ook ok kokok ko kkkok

SWI timerRestart; /* Execute Interrupt routine to restart the timer */
1 display (“k”); State = State3;}
break;

1**#************************************************************************/

SWI timerRestart; /* Execute Interrupt routine to restart the timer */
i display (“k”); State = State4;}
| | break;



288 Embedded Si*ﬂms

SWI timerRestart; /* Execute Interrupt routine to restart the timer */ ¥
display (“1”); State = State$;}

Ty

break;
/****************************************************************************ﬁﬂ */
State5: if (KF == 0) && Count == 0)) {
SWI timerReset; /* Execute Interrupt routine to reset and stop the timer */
display (“5”); cursor_next ( ); State = State9; }

s

exit ( ); .
/***************************************************************************%i */
State6: if (KF == 0) && Count == 0)) {

SWI timerReset; /* Execute Interrupt routine to reset and stop the timer */

display (“j”); cursor_next ( ); State = State10;} R
exit (); it
/***************************************************************************
State7: if ((KF == 0) && Count == 0)) { s
SWI timerReset; /* Execute Interrupt routine to reset and stop the timer */ i1

display (“k”); cursor_next ( ); State = State11;}
exit ();
/******#**************************************************************#**/
State8: if ((KF == 0) && Count == 0)) {
SWI timerReset; /* Execute Interrupt routine to reset and stop the timer */
display (“1”); cursor_next ( ); State = State12;}
exit ();

Bl N SRS

/************************************************************************/

}

/* End of Switch-case */
} 7* End of While infinite loop */
} 7* End of KeySFSM */

S SR L e

(i) coding for each state transition function and each output function; (ii) knowing the time period§}
by the process at each state transition function and between each state, when programming for realiti
The FSM model is appropriate for one process at a time, for the sequential flows from one state to o
state and for the controlled flow of the program. When using the FSM model, a state table represefa
becomes very handy while coding for state machine.

6 . MODELING OF MULTIPROCESSOR SYSTEMS

6.4.1 Multiprocessor Systems

A large complex program can be partitioned into the tasks or sets of instructions (or processes or threafls) and
the ISRs. The tasks and ISRs can run concurrently on different processors and by some mechanism the Psks
can communicate with each other.




Pro gi MOde"ﬂg Concepts ’

hole 6.10

Assume a large program has four tasks: task 1, task 2, task 3 and task 4. It has four ISRs: ISR_A,
' ISR_B, ISR_C and ISR_D. Assume a processor PA is statically scheduled to run task 2, task 4,
SR_B and ISR D Processor PB is statically scheduled to run task 1, task 3, ISR_A and ISR_C.

- Figure 6.11(a) shows the scheduling on the processors.

f \ sume a large program has four tasks: task 1, task 2, task 3 and task 4. It has 4 ISRs: ISR_A,
- JSR_B, ISR_C and ISR_D. Assume a processor has dual core with one core statically scheduled
18 run the tasks and the other the ISRs. ISRs send the messages to the tasks running on the

- phher core. Figure 6.11(b) shows the scheduling on a dual-core processor.

Signal or message Signal or message S
@ Task 2 @ Task 4
Signal or message Signal or message
(a)
- | Interrupt Interrupt Interrupt Interrupt
oy ISR_A \@ h ISR_C \l/s;fh Core
SRS \sR.B) (ISR (S0,
S1ormi S2orm2 S3orm3 S4 or m4

S means signal and m means message of an inter-process communication
(b)

Fig. 6.11 (a) Static scheduling of tasks and interrupt service routines on two processors (b) Static
scheduling on two processor cores

The problem is how to partition the program into tasks or sets of instructions between the various processors,
and then how to schedule the instructions and data over the available processor times and resources so that
there i optimum performance. Should there be static scheduling for running one task on one processor?
pose one processor finishes computations earlier than the other. What is the performance cost?
ce cost is more if there is idle time left from the available. What is the performance cost if one task
send a message to another and the other waits (blocks) till the message is received? Following are the
in modeling the processing of instructions in a multiprocessor system.
artitioning of processes, instruction sets and instruction(s).
oncurrent processing of processes on each processor.
tatic scheduling by the compiler, analogous to scheduling in a superscalar processor. (Each superscalar
ocessor has multiple processing units in parallel.)
en superscalar units are present in a processor, it means two or more pipelines of instructions are
xecuted in parallel. Pipeline has a number of stages (3 to 9) and different instructions are at different




|
i
|

stages. Problem is then not only of scheduling of concurrent processing instructions on jifferent
processors but also scheduling of concurrent processing instructions on each superscalar ynit and
pipeline in the processor.

5. Hardware scheduling issue, for example, whether static scheduling of hardware (processprs and
memories) is feasible or not (it is simpler and its use depends on the types of instructions whed it does
not affect the system performance).

6. Static scheduling issue (e.g., when the performance is not affected and when the processing|actions
are predictable and synchronous).

7. Synchronizing issues, synchronization means the use of interprocessor or process communjcations
(IPCs) such that there is a definite order (precedence) in which the computations are fired|on any
processor in a multiprocessor system (IPC is a message or signal to another process or proce
that it can proceed further. Section 7.9 will describe the IPC in detail).

8. Dynamic scheduling issues (e.g., the performance is affected when there are interrupts and

them for each processor.

There are several methods of scheduling and synchronizing the execution of instructions, SIMDs, M}
and VLIWs in the system. In-a multiprocessor system, scheduling is done after analysing the s s ling
and synchronizing options for the concurrent processing and scheduling of instructions, SIMDs, MIMDs
and VLIWSs. ’ ’ i

different tightly coupled processors. Processors process concurrently as follows:
1. One way of concurrent processing is to schedule each task so that it is executed on different prgcessors

and synchronize the tasks by some interprocessor communication mechanism.
2. The second way is, when an SMID or MIMD or VLIW instruction has different data (e.g.,
coefficients in Example 6.5), each task is processed on different processors (tightly coupled pr
for different data. This is analogous to the execution of a VLIW in TMS320C6, a Texas Ins

within 4 and 32 bytes. It has instruction level parallelism when a compiler schedules such
processors run the different instruction elements at the different units in parallel.
Note: The compiler does static scheduling for VLIWs. Static scheduling is one in which a
compiles such that the codes are run on different processors or processing units as per the schedule
decided and this schedule remains static during the program run even if a processor waits for dthers to
finish the scheduled processing. ;
3. Analternate way is that a task instruction is executed on the same processor or different instrudtions of
a task can be done on different processors (loosely coupled). A compiler schedules the [various
instructions of the tasks among the processors at an instance.




’ Modeling Concepts

Locked to PA Shared bus
Locke L] o f

Instruction
of a Task or Shared Data Sets

Different or Arrays

Instructions of a

et - [P | . f
a)

Inter Processor

Communication (IPC)
For Synchronization T
_ Needs
Unlocked to = )
a Specific - j I i Shared or Unshared
: Data Sets or Arrays

Task or to 7
Specific VLIW |
PB l
(b)

Fig. 6.12 (a) Tightly coupled processors sharing the same address space while processing multiple
tasks (b) Loosely coupled processors having separate autonomous address spaces as in
a network as well as shared address space for data sets and arrays

6.4.2 Model of Unfolding SDFGs into Homogeneous SDFGs

models the delays as well as the number of inputs and outputs (Section 6.2.3). The edges directed
to a cirtles are assumed to have a physical memory buffer and till the buffer has the data, the computations do
. When there is only one token at the input, and one at the output, an SDFG is called homogenous
SDFG|(HSDFG). Figure 6.13(a) shows a modeling of computations by an SDFG. Figure 6.13(b) shows an
representation after unfolding the SDFG in Figure 6.13(a). The dot and label over the edge show
delayefl. two number input tokens at vertex Y.

For|example, suppose that the outputs from vertex X’ (a set of computations) is a and input to Y’ (another
set of jcomputations) is also a. An SDFG can therefore unfold into a HSDFG. An SDF graph can be
unfolded into one or more HSDEGs. Two vertices can be connected by two or more edges in the HSDF graph.

at a veftex.

i there is an indefinitely long data sequence, SDFG-based modelling and the consequent unfolding
HSDF graphs helps. For example, HSDFGs applied to the computations of a fast Fourier transform
or for boding voice data. An HSDF graph can also effectively model an IPC (interprocessor communication)
graph| All computations are static scheduled in HSDFG execution at each vertex (firing elements for
the computations and creating another set of output tokens). Let there be a sequence of computations
that ‘age fired at the vertices. Let precedence in a directed graph define the computations order by which
the veftices are placed first, then next, and then next to next. A sequence on One processor among the set of
procegsors can be delayed at the arcs. Input from another processor (initial token) can also be delayed. A SDF
model ‘program then translates into a number of parallel concurrent or sequential model programs using
HSDHGs.




— ]
Embedded %ms
Q Actor for computations

—_— Edge for a Physical Memory
Buffer to Store outputs and Provide
Inputs

&0
(a)

P2 Delay ( Psz(z,ps) =0
X2

Token i is from Px4 and
Token j is from Px»

Delay (Pxs, Py ) =0 between the output Port P14

1 1
1 Px1 Py /—\
X1 Y
And Input Port Py *\_/

Superscript 1 means first output Token and 2 means Second » 2
Output token that fires after a delay with respect to the first (Delayed Initial token Py, removed)

(b) (9

Fig. 6.13  (a) A modeling of computations by an SDFG. The dot and label over the edge show
two number input tokens at vertex Y (b) Ahomogeneous SDFG representation after un ding

the SDFG (c) An APEG representation from an HSDFG after removing the delayed

‘Multiprocessor system computations and their firing instances can be modeled. Modeling simplifids'
programming, scheduling and synchronizing of the processes. HSDFG models are like an SDFGs bul
the feature that there is only one token that delays along an edge (arc or arrow) because there is
token at input, and one at output. : :

6.4.3 Model of Unfolding HSDFGs into APEGs

Acrylic precedence is a precedence of vertices in a directed graph such that there are no delays at the arcs.
tokens (delays) are taken off from an HSDF graph, an acrylic precedence expansion graph (APEG) is o
APEGs are important for scheduling in multiprocessor systems. An APEG not only has along the.arc,
starting inputs identical to the output from a previous vertex, but also no delaying for the token. Henge, the
execution is smooth along the arc with no interprocessor communication time. An APEG-based algerithm
becomes the simplest to schedule such that the precedence constraints in the algorithm remain the
before. Figure 6.13(c) shows a corresponding APEG that is a graph with no delays. It drives from a
[Figure 6.13(b)] or SDFG [Figure 6.13(a)]. :
A task-level concurrent process as well as an IPC graph can be modeled using APEGs and HSDFGs. A
thread running on one processor modeled as APEG can pass a control to another by blocking itself|or by
sleeping, but the sequence and process flow along the APEG remain intact. Example 6.11 explains '



Modeﬁng Concepts : 293

I {V, and V', be the computation vertices assigned to processor PA. Let V*,, V%, V", be the
mtion vertices assigned to processor PB concurrently processing with PA. An IPC is needed
| algorithm (or set of computations) V*; cannot proceed till there is a message (token) from V’,.
Let IPQ be between V”; and V’,. This synchronizes the processes at PA and PB through the IPC.
14 shows one APEG and one HSDFG with an IPC to PB from PA. :

~ ' odels are such that there are no delays during execution at any stage in an APEG or chain of
. Complex problems are therefore first modelled as the SDFGs, then SDFGs are unfolded into

s and HSDFGs are separated into APEGs. Processing is as per precedence constraints between the

13

APE{ 4. APEG-based algorithms become the simplest to schedule but precedence constraints in the algorithm

L

A is APEGs remains the same as before.

Q Circle Vertex for Computations at PA or PB

——> Directed arrow for the Outputs carried to

next Vertex
PA
PB
PA : Processor A Output V; Value is
PB : Processor B received as input aftera
delay and only then the
Computations Start

Fig. 6.14 A two-processor system with one acrylic precedence expansion graph and one
homogeneous synchronous data flow graph with an IPC to PB from PA

6.4.4| Applications of the Graphs to Multiprocessor Systems:
Partitioning and Scheduling

When there are multiple processors in parallel, the partitioning of a program is done as follows.
There are minimum number of IPCs so that the total time of IPC delays (waiting periods) minimized.
There is load balancing. Each processor has the least waiting time by sharing the processing load.
The performance cost minimizes. Performance cost means the execution time required (i) for
computations for the tokens and delays at the edge (communication time), (ii) the computation time
) |before firing (computations) by a vertex (transition) and (iii) context switch time.

Consider Figure 6.15 vertices. At each vertex computations occur such that the precedence constraints
mai (remain intact). The graph of a program thus partitions into the functions or tasks or threads. One of
the following strategies can schedule a program for running.

whhE




1. Each task or function is executed on an assigned processor. Each task or function is executed on|different
processors at different periods. Instructions of four different tasks are partitioned on two prpcessors.
Instructions of four different tasks are partitioned and scheduled on two processors differently injdifferent

periods [Figures 6.15(a) to (d)] show these four partitioning and scheduling strategies].

Processor - Task 1 >

¢ .1 Processor
Computations

— Output to Next Place

- Task 2 ————

Processor
(V'1,V'2V'3),and (V"1,V"'2V""3) are different threads of the task 1 and task 2, respectively
(a)

—> |PC

Processor

¢ lijis an instruction in V; to take i-th column and j-th row element of matrix A and add
bits with the Corresponding Element in B.
Processor

Processor

Processor

(d)

Fig. 6.15 (a) Each task or function is executed on an assigned processor (b) Each task or

nction

is executed on different processors at different periods (c) Instructions of four di erent
tasks are partitioned on two processors (d) Instructions of four different tagké are

partitioned and scheduled on two processors differently during different perio



=i Modeling Concepts

2. h set of data is partitioned in a VLIW instruction and is executed on the different processors,
hich execute the same program. Consider a matrix addition process. Each row can be added on a
ifferent processor when the data of the rows are partitioned among the processors. Such data partitioning

- i§ preferred when processing a DSP-VLIW.
A combined partitioning is done both at the data level as well as the task (or function) level. Different

idding and scheduling of vertices can be done in'a number of ways. (i) Each task or function is
on an assigned processor. (i) Each task or function is executed on different | processors at different
periokl é(m) Instructions of four different tasks are partitioned on two processors. (iv) Instructions of four
diffefest tasks are partitioned and scheduled on two processors differently-in dlfferent periods. (v) Data

partiti :? ng in case of SIMDs, MIMDs and VLIWs.

- B 'A
6.5" UML MODELLING

Recapitulate Section 5.5. The concepts used in object-oriented language are also used in software designing.
Objedt-oriented designing is also done as before.

1. OQbject-oriented design is done when there is a need for reusability of the defined software components
object or set of objects (reusable components). The new component can be abstracted from the
isting. New components and object designs are created by the object inheritances and polymorphs.
ere is information encapsulation within a designed component or object.
designed component object is also characterized by its identity (a reference to it that holds its state

behaviour), by its state (its designs for data, property, fields, attributes and algorithms) and by its
behaviour (method or methods that can manipulate the state of the design).

New object designs are created from the instances of a designed class. Class defines the state, attributes,

operations and behaviour of a design concept. It has internal user-level fields for its state and behaviour.

It defines the ways of using the designs.

4. A designed class can then create many component objects (designs) by copying the group and making
designs functional. Each design is a functional design. Each object design can interface with other
designs to process the states as per the defined behaviour.

A set of classes then gives the complete software design for a system.

UMLlis a unified (common) modeling language for any general system for which object-oriented analysis

are feasible and which can be abstracted by models. Unification in UML means its common




A conceptual design modeling can follow the UML approach. A conceptual design can use the usér, object,
sequence, state, class and activity diagrams. Table 6.3 gives UML ‘class’, ‘state’, ‘sequence’, ‘co ration’
and ‘object’ diagrams.

UML allows the SpecCharts and StateCharts: SpecCharts (specification charts) is another language for
specifications and charts. It allows state machines to use sequential programs to model the statd actions.
StateChart is a language for implementing the activity diagram, FSM states and state transitions, concurrency,
synchronization, timing and behavioural hierarchy. The message sequence charts are first prepared from
these the StateChart, to show an activity diagram. For example, StateChart can model two concurrent pctivities
of two FSMs. Its models along with its StateCharts-like features provide implementation of the exception-
handling (trapping and interrupting) routines easily. UML sequence diagrams may also use the StateChart
substrates, or models created by the StateChart language.

______________________ - Class Name ...
Rt Object Name -
s ,anjo‘ngr . = . —
count Swt 1
clock lnc«u(t)( U Behaviours L
operation UML Object
\———_—__'(—)/ operations i
UML Class o
(a)
Package of three
. Classes

Timer Processing |

CCh-s Free Running counte ) ( e )
Q Class OutCompare ) Anonymous object
C “Class nputCapture ) C :Real Time Clock )
Anonymous object
UML Package (9)
(b) Event preemption

<< hr-min-sec>>
Class Timer

UML Stereotype UML State
(] (f .
Fig. 6.16 Representation of unified modeling language basic elements (a) class (activeQlass and
abstract or inactive class) (b) package (c) stereotype (d) object (e) anonymous object
and (f) state f

A Transition

‘UML is a powerful modeling language for: (i) software visualizing, (ii) data design, (iii) algorithntdd
(iv) software design, (v) software specifications and (vi) software development process. UML basic

are class, package, stereotype, object, anonymous objects and state. UML modeling is by class di
state diagrams, object diagrams, sequence diagrams and collaboration diagrams.



Tablf 6.2 UML Basic Elements

Modeling
Diagr

297

What does it model
and show?

Exemplary Diagrammatic
Representation

Class

Abstract
class

Object

Active
object

Active
class,

Signal

Stereo-
type -

Class defines the states, attributes and behaviour. A
class can also be an active or abstract class.

A class in general may be abstract when either one or
more states, operations or behaviour not completely
defined, being in an abstract stage, or when it is not
for creating objects but only a class, which extends,
implements the abstract behaviours (mnethods) and
specifies the abstract attributes (fields or properties)
that class can create the object.

- Aninstance of aclass that is a functiorial entity formed

by copying the states, attributes and behaviour from a
class.

An active class defines an active object instance of an
. active class. A process or thread is equivalent to the

active object in UML, because active object posts the
signals like thread and can wait before starting or
resuming the operations using the methods, -

Anactiveclassmeansathmaxiclassthathasadeﬁned ;

state, attributes, behaviours and behaviours for the
signals. Active class in addition, defines the control
by signal behaviours (for a signalling object, which
can be posted and for which it may wait before starting
or resuming). Thus there is control on the class
behaviour.

An object, which is sent (posted) from one active class
(active object) to another active class, which waits for
start or resumption. Signal object behaviour defines
the behaviour (operation method) of the interprocess
communication. [Signal (Section 4.2.2) is software
instruction or method (function), which generates
interrupt.] Signal object has attributes (parameters).
Attribute may be just a flag of 1-bit. :

An unpacked collection of elements (attributes or

behaviours) that is repeatedly used. g e

Rectangular box with divisions as shown
in Figure 6.16(a) for class names for its
identity, attributes and behaviours
(operations or methods or routines or
functions).

Rectangular box with divisions for class
names for its identity, attributes and
operations, but with prefix abstract with
each abstract behaviour and attribute.

Rectangular box with object identity
followed by semicolon and class identity
as shown in Figure 6.16(d).

Rectangular box with object identity
followed by semicolon and class
identity, but with prefix active with
object identity.

Rectangular box with thick border lines
and inner divisions for the class names
for the identity, attributes and behaviours
(operations and signals), but with prefix
active with class identity.

Signal identity within two pairs of
starting and closing signs followed by
class identity (Similar to stereotype).

Rectangular box with stereotype identity
name given within the two pairs of
starting and closing signs followed by the
class identity as shown in Figure 6.16(c).

(Contd)



Modelling What does it model Exemplary Diagrammatic
Diagram , " “and show? Representation
Anonymous ~Anobject without identity. Rectangular box with no object identity before
object ' ‘ ' the semicolon and class identity as sHown in
L o ; Figure 6.16(e).
Package A packed Qoﬂéctioﬁ of classes and objects. A rectangular box with inner boxes fpr each
B class with name for class-identity. Backage
name is given over the top of box as shown in
Figure 6.16(b).
State A state. Rounded rectangle with state name for itslidentity
I s and with an arrow from the box. The¢ arrow
indicates a transition as shown in Figure 6.16(f).
Table 6.3 UML Diagrams
Modeling What does it model and show? Representation
Diagram
State Statc dlagram shows a model of a structure A dark circular mark shows the starting point, arroys show
diagram for its start, end, m—betwcen assoclauons the transitions. A label over the arrow shows the cpndition
mroughthetransmons and shows eventlabels’ or event, which fires the transition. A dark rectangular
(or condition) wnh assocmted transmons " mark within a circle shows the end [Figure 6.17(a)].
Class Class diagrams show how the classes and Rectangular boxes show the classes and arrows with
diagram objects of a class relate hierarchical unfilled triangles at the end show the class higrarchy.
associations and'object mtcracnons between Classes in the hierarchy can be joined using a lige. Start
the cmm and objccts : and end numbers on a line show the number of objects of
: a class associates with the number of objects of the other
' _ [Figure 6.17(b)).
Object Object diagram defines -the static Refer Figure 6.17(c).
diagram configuration of the system. It also gives the
relationship among the consequent objm’ ts.
Sequence _ Sequence diagram visualizes themteracnons . Rounded rectangles for states and rectangular bokes with
diagram between the Objems Sequence diagrams also  object identity and class connects by arrows. Vertical
specnfy the sequences of states. axis pointing downward shows progressively the time
{Figure 6.18(a) and (b)'].
Cpllaboration Collaboration diagram visualizes the Horizontal or vertical axis pointing right or downwards
diagram concurrent sequences of states or object shows progressively the time and a paralle] set of
sequences show concurrency. Conditions or evy

interactions.

be labelled on the arrow [Figure 6.18(c)?].

bnts can

! Figure 6.18 shows the UML sequence diagrams. Figure 6.18(a) shows sequence of interaction between the states, (
the sequence diagram (e.g., autematic chocolate-vending machine sequences of states).
2 Figure 6.18(c) shows the collaboration diagram (concurrent multiprocessing).

b) shows




Pro*# Modeling Concepts

¥

Event Preemption

* fask 1 Wait

(a

TaskPortin ;
ReadPort

\] TaskPW : Password J’_—

[Class Ethemetfra’me)
- . Os - i - ,t ;' ; »"-,-‘ .
Start Class Packet

Class ByteStream

(b)

Task Transaction:
Transaction

/

TaskUser : User

©

Fig. 6.47 Unified modeling language diagram: (a) state diagram (b) class diagram (c) object diagram

Task 1 Create

Casel ™ TaskiActives
Processor - Task1Running
Case 2
PA Start
Task1Running | @ Task 1 Finish
Task2Running |-
Processor PB I @ Task 2 Finish
Start (a)
User Coin Inputs
Time (a,b,c,d)
Sequence number : Operation
Taskport: 3: Input 2 TaskPW: 70
Readport Password X
. TaskTransaction:
1.,;,_lnpu5 1 ‘{’assel:User: - ser | Transaction
Se&i’xenoe “ Operation
Number (0

Fig. 6.18 Unified modeling language diagrams: (a) sequence of interaction between the states

(b) sequence diagram (e.g., automatic chocolate-vending machine sequences of states
(c) collaboration diagram (e.g., multiprocessing concurrently processing system)



Embedded i »éms
- "
V) S T

¢ Important models for programming are multiple function calls, polling for events, function queuing, se g
functions, data flow graph, CDFG state machine, concurrent processing and OOP. :
* A standard design practice is using a model or set of models during the development process for sof

reduced to the following. Coding for each process represented by a circle using the data input from ingp
arrow(s) and generating data output to the outgoing arrow(s). 5
¢ In a DFG model, there is a single data-in point and a single data-out point with a process or set of process
are represented by circle(s). When the assignment to an input is fixed in a DFG, it is also called ADFG. Prograththing
complexity is minimized by modeling a program in terms of as many DFGs as possible and the use of asm
ADFGs as possible. 1
e Another important concept of program modeling is the CDFG for program design and analysis. The {QDFGs
represent the controlled decision at the nodes and program paths (DFGs) that are traversed consequently f¢
nodes after the decisions. :
¢ Program modeling can be done by the FSM and state machine models. :
o The FSM model is appropriate for one process at a time, for the sequential flows from one state to the nex
metipns,
(ii) tasks or (iii) single instruction multiple data instructions or (iv) multiple instructions multiple data insts ‘:ﬁms
or (v) very long instruction words. The VLIWs in the DSP instructions can be completed at high speed. Madefling
of multiprocessor system uses SDFG and HSDFG representations in which there is unfolding of the SDFG goithat
there is only one token which delays along its edge and/or an APEG in which there are no delays. i 1
e Models are used for partitioning, load balancing, scheduling, synchronization and resynchronization dugi j the
 class,

package, stereotype, object, anonymous objects and state. UML specifies the class diagrams, state diggrd
object diagrams, sequence diagrams and collaboration diagrams.

£
‘ Keywords and their Definitions Q T

0
ADFG : Acrylic DFG model when the assignment to the input is fixed. ‘
APEG : HSDFG with no delays and vertices arranged in the precedence order. E
Concurrent processing : When several processes execute a set of instructions such that each can plodeed
' further by passing or exchanging messages or signals or tokens. 1
CDFG : Modeling by representing the controlled decision at the nodes and yam
paths (DFGs) that are traversed consequently from the nodes after the degfsipns.
DFG : The code for each process is represented by a circle and the data inpu&»  the

process are by incoming arrow(s) and the generation of data output is {
the outgoing arrow(s).
Finite state machine : A model in which there are finite states. After a given set of inputs,
changes according to the state transition function.




Progia ‘ Modeling Concepts '

HSi) : Representation in which there is unfolding of the SDFG so t.hat there is only one
i © T Tioken, which may delay along its edge. . ’
Intdrpyocess communication : During concurrent processing, IPC is a message or signal or token to amother
: waiting process or processor to proceed further.
~ lancing : Partitioning and scheduling of threads (set of instructions) and instructions such
lﬁI that each processor shares the processing load in a multiprocessor system.
M Tt is a representation by which problem, process, design or analysis can be easily
: understood and the problem becomes simplified after modefling.
Multiprocessor system : A system that uses two or more processors or that uses dual cores or multiple
Db cores for faster execution of the (i) program functions (ii) tasks or (iii) single
instruction multiple data instructions or (iv) multiple instructions mulnple data
instructions or (v) very long instruction words.

Parti oni : Partitioning the graphs into parts, with each part scheduled on the processors as
i 5 per the scheduling strategy adopted.

Pe pance cost : Time taken in waiting for execution ata vertex or at a sub-graph or micro thread.

Resi'y ghronization : Repeating synchronization by suitable mathematical analysis, reducing the

number of IPCs and thus the delays caused at the processors waiting for the
IPCs in a multiprocessor system.
Allocation of different vertices or sub-graphs on different processes.
A DFG representation in which input(s) delays are also shown. Circles (vertices)
are the actors where computations take place. Nodes in a DFG edge (arc or
arrow) has-dots for the delays and labels the number of inputs and outputs.
! ansition function : A process or state of codes that carry a program state from one to another.
UML : A language used for modelling the (i) software visualizing, (ii) data designs,
e (iii) algorithms design, (iv) software designs, (v) software specifications and
.y (vi) software development process.
To@zl@mformance cost : Total of all performance costs. This will be the minimum if the load on the
processors is balanced and there is appropriate partitioning and scheduling.

i
i

Review Questions

y does program complexity increase with a reduced number of DFGs and increasing decision nodes?

Ekplain with one example each, APEG, SDFG and HSDFG.

y do you unfold SDFGs into as many HSDFGs as feasible and then HSDFGs into as many APEGs as possible?
w does concurrent processing help in VLIW instruction execution at high speed?

w will you schedule an SIMD instruction on two processors?

w will you schedule an MIMD instruction on two processors?

w will you schedule an VLIW instruction on two processors?

at do you mean by completely dynamic scheduling and completely static scheduling in a multiprocessor system?
at do you mean by load balancing? How do you achieve it by combined partitioning?

w is an anonymous object denoted in UML?

at are the features of UML?

—_—
= 9O 00Nk WD =



‘ - -

12.
13.
14,

16.
17.
18.

19.

20.

21.

22.

. Draw an FSM model of an automatic chocolate-vending machine program. The machine permits only

k’/‘ Practice Exercises

Tabulate various program models and give two application examples of each.

How will the DFG for FIR filter modify as CDFGs?

Draw a CDFG to incorporate decision nodes at the loop start and loop end to limit the summation up to
n = 10 for Equation as follows: y, = X a,x. (n-i) + = b,.y. (n-1) used in an IR filter, .:I“

type of

coin, Rs 1, one chocolate at a time and one chocolate is cost is Rs 8.
Give the program model of master and slave robots in robot orchestra.
Give the program model of a digital camera.

Draw multiprocessor system for the cases: (i) tightly coupled to the memory; (ii) loosely coupled; (iii) copipled by
mesh; (iv) ring-coupled; (v) torrid-coupled and (vi) tree-like coupling. )
How do you solve the following problems: ‘How can a program be partitioned into tasks or sets of i

times and resources so that there is an optimum performance’?
Assume that four processes are scheduled to run on two processors. A program is partitioned in such a
with each 10,000 ns each process schedules 10 times on each processor. What will be the minimum m
contexts switching/microsecond?

How will you create and display SMS message T9 keypad of a mobile phone? Use the states, FSM model
tables for all keys 0, 1 to 9 with T9 keypad. Use Examples 6.7 to 6.9 as templates.

Draw the ‘class diagram’, ‘state diagram’, ‘sequence diagram’, ‘collaboration diagram’ and ‘object di
AVCM in Section 1.10.2.




'E B
]
i

|
Interprocess
Communication and
Synchronization of
Processes, Threads
and Tasks

The following important points have been discussed in
carlier chapters.

1. Software embedded in a system can be highly complex
as an application program has a number of functions,
ISRs, threads, multiple physical and virtual device
drivers, and several program objects that may be
sequentially or concurrently processed on a single
processor or multiple processors.

2. The system tasks may have vastly different functional-
ities, priorities, response-time constraints, latencies
and deadlines.




We will discuss the following with examples. i
1. Processes or threads or tasks are controlled by an OS, which enable$ their
running concurrently in a system.
The tasks and their states.
. The tasks and task-control-blocks, thread-stacks and process- contm]-hlocks.
4. The context and context switching in multiprocessing, multitaskjng and
multithreading system. '
5. The distinction between functions, ISRs and tasks in order to understand the
finer details of processing of each during a program run.

w N

We will learn the uses of the following IPCs (inter-process communication functions)

and devices.

siE 1. Semaphore to communicate occurrence of an event at one process to another

o which waits for the event to proceed further.

2. Semaphore as mutex or counting semaphore and understanding of eiP and
V semaphores.

Problem and solution of the data that have to be shared between multipe tasks.

4. Mutex in solving the shared data problem and application in running critical

section codes.

5. Solution of the priority inversion problem and deadlock situation when using

a semaphore.

6. Signal by a process to force a running process to interrupt and startfa signal

handler function (ISR) or process.

7. Queue in which messages are inserted by a process and communitated to

other which are waiting for messages.

8. Mailbox to communicate a message from one process to another whifh waits

for the message to proceed further. '

9. Pipe device to communicate the bytes for messages from one process tq another

which takes the messages.

10. Socket as a bi-direction device to communicate the bytes as a stream oras per

the protocol from one socket address in a process to another socket addtess in

another process which can be local or remote.

11. Remote procedure call from a process to call a function or method in{ahother

process which is remote as per the protocol from one address in a process to

another address in another process which can be local or remote.

An OS provides mechanism of the IPCs to enable processes to synchro‘PZC and

w

transfer the signals and messages. The OS also provides functions for the process,
memory, IOs, device, time and event management. The OS also provides imterrupt-
handling mechanism. The OS also provides scheduling mechanism for the processes
or tasks or threads. Chapter 8 will describe these mechanisms. '

Chapters 9 and 10 will describe with exemplary RTOSes. The RTOSes alsd provide
for handling the task-priorities and real-time constraints. v j




ss Communication and Synchronization of Processes, Threads and Tasks

MULTIPLE PROCESSES IN AN APPLICATION

Process

tion program can be said to consist of a number of processes [Figure 7.1(a)] and each process runs under
trol of an OS (Section 1.4.6). Meaning and the basic concept of process can be understood as follows:
1.| A process consists of sequentially executable program (codes) and state-control by an OS.
2.| The state during running of a process is represented by the information of process state (created,
running, blocked or finished), process structure—its data, objects and resources, and process control
block (PCB) [PCB explanation follows later].
3.| A process runs on scheduling by OS (kernel), which gives the control of CPU to the process. Process
runs instructions and the continuous changes of its state takes place as the PC changes. [PC is program
counter or instruction pointer to point to the current instruction of running program.]

Pracess is that unit of computation, which is controlled by some process at the OS for scheduling that lets
it exe¢ute on the CPU and by some process at OS for resource management that permits use of system
memoyy and other system resources such as network, file, display or printer.

xdmple 7.1

ingider a mobile phone device (Section 1.5.5). The device-embedded software is highly complex. It has
wgber of functions, ISRs, threads, multiple physical and virtual device drivers and several program
detts that must be concurrently processed on a single processor. The OS assumes the application-embedded
yre as consisting of a number of processes. Exemplary processes at the device are as follows:

ffterfaces) and (v) Key-mput process for provisioning of user keypad mtermpts

i‘

process state. The PCB stores in the protected memory addresses at kernel. The PCB consists of following
ation about the process state.

1) Process ID, process priority, parent process (if any), child process (if any) and address to the next
process PCB, which will run next.

Allocated program memory address blocks in physical memory and in secondary (virtual) memory
for the process codes.

Allocated process-specific data address blocks.

Allocated process heap (data generated during the program run) addresses.

Allocated process stack addresses for the functions called during running of the process.

Allocated addresses of the CPU register-save memory as a process context represents by CPU registers,
which include the PC and SP [These register contents (process context) load into the CPU registers
from the memory when the process starts running, and the addresses of CPU register-save memory
saves the registers on context switch to another process].

Pr:c‘Iss Control Block PCB is a data structure having the information using which the OS controls the

[ B )




Embedded aﬁt.ms

~Units of computation; execution of codes in which is controlied by the 'OS scheduler, inter-
process communication, resource-manager, system-memory and other system-resources (such
as network, file, display or printer) access control mechanisms and are processed concurrently.

I process 1 ]» ----- | process 2 ]» ---------- Lprooessn—-1 }—---4' processnj
| PCBprocess 1 | [ PCBprocess? | [PCB process n-1] | PCB pracesen |
(a)

T
Thread | Thread Thread | | Thread
1 i 1. k
| Stack | [ Stack | | Stack | [ stack |

and stack, its own priority-parameter for its scheduling by a thread-scheduler, and its own variables that :
into the processor registers on context switching and is processed concurrently along with other threads. |

(b)

A thread is a process or sub-process within a process that has its own program counter, its own stack pow

o |

| TCBtask1 | [ TCBtask? | {TCBtaskn-1] [ TCBtaskn |

Tasks are embedded program computational units that run on a CPU under the state-
control using a task control block. The tasks are processed concurrently

(c)
Fig. 7.1 (a) Processes (b) Threads (c) Tasks

7. Process-state signal mask [when mask is set to 0 (active) the process is inhibited from runnigg and

when reset to 1, the process is allowed to run].
8. Signals (and messages) dispatch table (for the process IPC functions).
9. OS-allocated resources’ descriptors [e.g., file descriptors for open files, device descriptors foj
(accessible) devices, device-buffer addresses and status, socket-descriptor for open socket].
10. Security restrictions and permissions.

The present CPU registers, which include PC and SP are called context and save on the PCB-poi

" open

process stack and register-save memory addresses. Then the running process stops. Other proces&
registers now load and that process runs. This also means that the context has switched to another pre

~ 7.2 T MULTIPLE THREADS IN AN APPLICATION

Application program can be said to consist of a number of threads or a number of processes and
[Figure 7.1(b)]. Meaning and basic concept of thread can be understood as follows:

eads



ss Communication and Synchronization of Processes, Threads and Tasks 307

b

1. |A thread consists of sequentially executable program (codes) under state-control by an OS.
2. |The state information of a thread is represented by thread-state (started, running, blocked or finished),
thread structure—its data, objects and a subset of the process resources and thread-stack.

3. |A thread is a lightweight entity.

[Note: A process is considered as a heavyweight process and a kernel-level controlled entity. A process
can haye codes in the secondary memory from which the pages can be swapped into the poysical primary
memory during running of the process. The process may therefore have process structure with the virtual
memory map, file descriptors, user-ID and so on. A thread can be considered a lightweight process and a
process-level controlled entity. [Note: What the structure is, however, depends on the OS.]
read is a process or subprocess within a process that has its own PC, its own SP and stack, its own priority

on confext switching. It has its own signal mask at the kernel. The signal mask when unmasked allows the thread
to activate and run. When masked, the thread is put into a queue of pending threads. A thread stack is at a

readed process. A thread can be considered as daughter process. A thread defines a minimum unit of
eaded process that an OS schedules onto the CPU and allocates the other system resources.

king. Task is a kernel-controlled entity while thread is a process-controlled entity. A task is analogous
ad in most respects. A thread does not call another thread to run. A task also does not directly call
ef task to run. Both need an appropriate scheduler. Multithreading needs a thread-scheduler. Multitasking
task-scheduler. There may or may not be task groups and task libraries in a given OS.

mple 7.2 , -
igder a mobile phone device (Section 1.5.5). Display_process can have multiple threads. A thread
i@My_Time_Date can be for displaying clock time and date. A thread Display_Battery can be for displaying
efy power. A thread Display_Signal can be for displaying signal power fot communication with the
f service provider. A thread Display_Profile can be for displaying silent or sound-active mode. A
Display_Message can be for displaying unread message in the inbox. A thread Display_Call Status

m¢1 “ These threads' can share the common memory blocks and resources al,lqcare‘d‘fto~'the<
Display_Process. A display thread is now the minimum computational unit controlled by the RTOS.

t
H
|
i
i
H



e S A Embedded SHstems

A thread is a process or subprocess within a process that has its own PC, its own SP and stack,

has a thread stack at the memory. It has a unique ID. It has statcs in the system as follows: startmg,
blocked and finished. f‘

~7.3 TTASKS

Task is the term used for the process in the RTOSes for the embedded systems. (For example, VxWo;
MCOS-II are the RTOSes, which use the term task.) A task is similar to a process or thread in an OS]
OSes use the term task and some use the term process. Figure 7.1(c) shows the application software co
of a number of tasks.
1. A task consists of a sequentially executable program (codes) under a state-control by an OS.

2. The state information of a task is represented by the task state (running, blocked or finished),
structure—its data, objects and resources and task control block (TCB).

An application program can also be defined as a program consisting of the tasks and task behaviourk

.- Task is defined as cmbedded program computational unit that runs on a CPU under the state-cogi§
‘kernel of an OS. It has a state, which at an instance defines by status (running, blocked, or finjgh
structure—its data, objects and resources and control block.

Example 7.3

to run the application-embedded software as consisting of a number of tasks. Exemplary tasks at the ey
are as follows: (i) Task User Keypad Input: the keypad gets the user input. (i) Task Read-Amountg]
reading the inserted coins amount. (iii) Chocolate delivery task; delivers the chocolate and signals thg |
machine to get ready for the next input of the coins. (iv) Display Task. (v) GUI_Task (for graphic user §{
interfaces). (vi) Communication task for provisioning the AVCM owner access to the machine 4
status and information.

7.4 TASK STATES ‘!

Figure 7.2(a) shows a task and its states. Task has state, which includes its status at a given instancd in the
system. It can be one of the following state: idle (created), ready, running, blocked and deleted (finishefl). It is




i

Intel

=

Communication and Synchronization of Processes, Threads and Tasks

in the r¢ady state again after finish when it has infinite waiting loop—an important feature in embedded

system

esign. Multitasking operations are by context switching between the various tasks.

created Signal or mesage

- . Signal or message
Attached with kernel Wait for Signal or
message

detached with kernel Task

()
Task_Send_Card_lInfo : . Wait
> blocked ) for
. O authentication
mailbox_post message at

(authenticaﬁ()n_request) Task_Read_Port__lnpU‘

Wait signal or
message

(b)
7.2 (a) Task and its states (b) States of the task Task_Send_Card_Info in Example 7.4

Task_Send_Port_Output

sk can be considered to be in one of the five states. What the states can be, however, depends on the
live states are as follows.

. \Idle (created) state: The task has been created and memory allotted to its structure. However, it is not

ready and is not schedulable by the kernel.

Ready (active) state: The created task is ready and is schedulable by the kernel but not running at
present as another higher priority task is scheduled to run and has the system resources at this instance.
Running state: Executing the servicing codes and getting the system resources at this instance. It will
run till it needs some IPC (input) or starts wait for an event or till it pre-empts by another higher
priority task than this task.

Blocked (waiting) state: Execution of the servicing codes suspends after saving the needed parameters
into its context. It needs some IPC (input) or waiting for an event or waiting for higher priority task to
block. For example, a task is pending while it waits for an input from the keyboard or file. The
scheduler then puts it in the blocked state. '

. | Deleted (finished) state: The created task has memory de-allotted to its structure. It frees the memory.

Task has to be re-created.
eated and activated task will be in one of the three states, ready, running and blocked.

ple 7.4

r a smart card (Section 1.10.3). When it is inserted into a card reader host machine, it gets the
n and charges up. ' ' e ‘ ; ‘

) J¥ Let the main program first run an OS function OS_initiate ( ). This enables use of the RTOS ‘
. Fi functions. ) o S T I



|310 R e eV ot e Ermbedded )

'Step 2: The main program runs an OS function OS _Task_Create () to create a task, Task_Send_Ca
The task is for sending card information to the host. The task is allocated memory for the s
The Task has a TCB using which the OS controls the task. The task state is idle state. Let #g
be of high priority. :
Step 3: OS_Task Create()mnstwomorcnmestoc:eatetwoodwrtasks Task_Send_Port_Ou
Task_Read_Port_Input and both of them are a!so in idle state. Let these tasks be of middl
priorities, respectively. ’ e
Step 4: The functions for starting 0S| Start () and for initiating n system clock i interrupts OS_Ticks
() run. The system switches from the user mode to the supervisory mode every 1/60
n = 60. All three task states will be made in ready state by an OS function. i
Step 5: The OS runs a function, which makes the Task_ Send_Card_Info state as ru
The Task_Send_Card_Info runs an OS function mailbox_post (authentication_request)]
sends the server. 1dent1fication request through IO port to- the host using
Task_Send_Port_Output. ]
Step 6. The Task_Send_Card Info runs a function mailbox_wait ( )» which makes the task state as
and the OS switches context to another task Task_Send_Port _Output and
Task_Read_Port _Input for reading IO port input data.
Step 7: When the mailbox gets. the authentication message from the host server, the OS swit
context to Task_Send_Card_Info and the task comes to the running state again.
Figure 7.2(b) shows. the task Task_Send_Card_Info states in different steps.

~ 7.5 ~TASK AND DATA

Figure 7.3 shows a task and its data including its context and TCB. A task has the following data speéci

a task, which saves at the TCB.
1. Each task has an ID just as each function has a name. The ID is of one byte and is called the i
the task if a typical OS assigns each ID a number between 0 and 255.

2. Each task may have a priority parameter. The priority, if between 0 and 255, is represented by a byte

(usually, the higher the value, the lower the priority of that task).
3. Each task has its independent (distinct from other tasks) values of the following at an instan

@) PC

(memory address from where it runs if granted access to the CPU) and (it) SP (memory address from

where it gets the saved CPU registers and parameters, which includes registers for the task P
pointer to task stack-top after the scheduler grants access to the CPU). These two values are
its context of a task.

and initiates another task into the running state The context thus continuously updates during the
a task, and the context is saved before switching occurs to another task.

Context Switch Only after saving these registers and pointers does the CPU control switch to

process or task. The context must retrieve on transfer of program control to the CPU back for ru:x‘:f’
same task again, on the OS unblocking its state and allowing it to enter the running state again. The ¢f
switching action must happen each time the scheduler blocks one task and runs another task.

and

| part of

i
other

dex



Communication and Synchronization of Processes, Threads and Tasks @

f (i) Pointer to a startup function;

A o a function run starts a task from
: this address.

(ii) A pointer to the context data

mmmm

status tokens.

. (ily A pointer to a new Task

object (function) which will run

next.

TCB

(iv) A pointer o the stack of a
.............. : previous Task object (function)

Y =
Fig. 7.3 A task and its data including its context and task control block

Eachitask also has an initial context, context_init. The context_init has the initial parameters of a task. The
parametprs of context_init are as follows: (i) Pointer to a start-up function: a function run starts a task from
this addtss. (ii) Pointer to the context data structure: the structure includes the processor registers and status
tokens. (iii) The task context may also include a pointer to a new task object (function) which will run next.
(iv) It may also include a pointer to the stack of a previous task object (function).

Exdrgple 7.5
Congi¢ ; fr an ACVM (Section 1.5.2). After the Task Read-Amount (for reading the inserted coins amount)
gets fhiirequired cost of the chocolate, 1t send an IPC (a s1gnal or message) to let the OS context swntch and

. Chocolate delivery task

agam and sends another IPC to the machme ready for the next input of the coins.
hdfe are context switches from Task Read-Amount to Chocolate delivery task, from Chocolate
iled task to Display task and from Display task to Task User Keypad Input.

7.5.1 |Task Control Block

Each tagk has a TCB. TCB is a memory block. Figure 7.3 showed the TCB data for a task. The TCB is a data
structur¢ having the information using which the OS controls the task state. The TCB stores in the protected
memary area of the kernel. The TCB consists of the following information about the task. It stores the current
instant information (to indicate the address of the next instruction to be executed for this task), memory
map, signal (message) dispatch table, signal mask, task ID, CPU state (registers, task PC and task SP) and
kernel sfack (for executing system calls and so on). [Note: (i) The TCB is similar to the process control block
(PCB) aid (ii) TCB data structure can vary from one OS to another.]

CLEAR-CUT DISTINCTION BETWEEN FUNCTIONS, ISRs AND TASKS
BY THEIR CHARACTERISTICS
7.6.1 |Task Coding in Endless Event-Waiting Loop

Each task may be coded such that it is in endless event-waiting loop to start with. An event loop is one that
keeps oh waiting for an event to occur. On the start event, the loop starts from the first instruction of the loop.




)

Execution of service codes (or setting a token that is an event for another task) then occurs. At the end, the

task returns to the start event waiting loop.

Example 76 « e
Consider an ACVM Chocolate delivery task. It can be coded as follows. - '

/* The codes for the Chocolate_ delivery_ task */
static void Task_Deliver (void *taskPointer) {

/* The initial aSSIgnments of the variables and pre-infinite loop statements that execute once | :

while (1) { /* Smrt an inﬁnite while-loop. */

/* Wait for an event indicated by an IPC from Task Read-Amount */ ‘

I Codes for delivering a chocolate into a bowl. */

/ * Send message through an IPC fOI dmplaymg “Collect the nice chocolate Thank you, visit ag i

the Display Task*/
/* Resume delayed Task Read- Amount ¥
J; * End of while loop*/
/ * End of the Task_Deliver function */
7.6.2 Distinction between Function, ISR and Task

When there are multiple devices, functions, ISRs and program objects, the embedded software can be n

Functions are subunits of the processes or tasks or ISRs or another function. Functions and ISRs do 1

analogue of PCB or TCB. They have only a stack. Function has no associated scheduler-like tasks gchiduler
or thread scheduler at the kernel. ISR has associated interrupt handler at the kernel. Table 7.1 summarni

characteristics of functions, ISRs and tasks.

odelled
as consisting of multiple tasks and each task is scheduled by the kernel schedule and uses IPCs for
synchronization. Threads are used in embedded Linux- or Unix-based applications. Threads are usedjin Java.

ot have

s the

1. Function is used-in any routine for performing a specific set of actions as per the: argumentgabse

to it and which runs when called by a process or task or thread or from another function. Fupch
run by nesting. Function runs after the previous context saving and after retrieving the contqg §

a common stack.

2. An ISR is a function, which executes on mtarrupts An ISR executes on an event and pgngli

ISRs run as per priority-based scheduling. ISR can post the events or signals or messages

run as per the hardware-based interrupt-handling mechanism. ISRs may or may not run by. ppsti

ISR runs after the context saving and after retrieving the context from a common stack in dade

nesting.
3. A task is a function, which executes on scheduling. A task can wait as wel] as post the evd
signals or messages. The tasks run after saving of the previous context at the SP pointed adg

task TCB and the context switching to new context at the new task SP pointed address in TCR ;
tasks run as per the task scheduling and IPC management mechanism of the OS. % ‘



Communication and Synchronization of Processes, Threads and Tasks

(2]

that Section 5.4.6 explained the re-entrant function. Each task must be either reentrant function or must

Function

ISR

Task

¢ Function is used in any
routine or process or task for
runiing specific set of codes for
perfbrming a specific set of actions
ag per the arguments passed to it.

2. Culking source: A call to run a
fundtion is from another function
or.pyocess or thread or task.

t save: Each function code

top to that value where the
left earlier [Figure 7.4(a)].

ess, thread or task is at the
on memory block when the
nt functions execute.

ere is nesting of one another
ure 7.4(b)]. There is a hard-
ware mechanism for sequential
nesged mode synchronization

ISR is used for running a specific set
of codes for performing a specific set
of actions. ISR has code, which runs
once and for servicing the interrupt-call
only. :

An interrupt call for running an ISR
can be from hardware or software at
any instance. All interrupt source calls
for running the ISRs are independent.

Each ISR is an event-driven function
code. The code run by changes in
program counter instantaneous value.
ISR has a stack for the program counter
instantaneous value and other values
that must save before allowing another
ISR to execute. The stack need not be
at a distinct memory block when
different ISRs execute and the ISR
stack is at a common memory block
when there is nesting. (This is similar
to the stack that associates with the
functions.) Processor hardware may or
may not provision for allowing the
ISRs to execute in the nested mode.

There is a hardware mechanism for
responding to an interrupt for the
interrupt source calls and there is,
according to the given OS kernel
feature, a synchronizing mechanism
for the ISRs. (Refer to the next chapter;
Figures 8.1(a) to (c) and 8.4.

Task is used for running specific set
of codes for performing a specific set
of actions. Task has codes in an
endless waiting loop.

A call to run the task is from the
system (OS). A OS preemptive
scheduler can allow another higher
priority task to execute after blocking
the present one. It is the RTOS
(kernel) only that controls the task
scheduling.

Each task code run by change in
program counter instantaneous value.
Each task has a distinct task stack at
the distinct memory block for the
context (program counter instantane-
ous value and other CPU register
values in task control block) that must
save when blocking from its running
state due to an interrupt or pre-
emption by another higher priority
task. Each task has a distinct process
structure (TCB) at the distinct
memory block.

According to the given OS kernel
feature, there is a task-responding and
synchronizing mechanism. The
kernel functions are used for task
synchronization because only the
kernel calls a task to run at a time.
When a task runs and when it blocks
itis fully under the control of the OS.!

(Contd)



Embedded ##ems
i) is
ted

Assume OSSemPost ( ) is an OS function for IPC by posting a semaphore and assume OSSemP:
another IPC function for waiting the semaphore. Let sdispT is the binary semaphore*
from Chocolate delivery task and taken by a Display task section for displaying the thank you mes
sdispT initial value = 0. The following will be the codes.

static void Task_Deliver (void *taskPointer) { 3
while (1) {

/* Codes for delivering a chocolate into a bowl. */

OSSemPost (sdzspT) /* Post the semaphore sdispT. This means that OS function increments sdiséT in

corresponding event control block. sdispT becomes 1 now. */

IR

static void Task_Display (void *taskPointer) {

while (1) {

and becomes 1. When sdispT becomes 1, the wait is over, an OS function runs to decrement;,
in corresponding event control block, sdispT becomes 0 now, and Task then runs further the:
following code*/ ‘ !
/* Code for display “Collect the nice chocolate. Thank you, visit again” */ :

)

1. Semaphore provides a mechanism to allow section of the task code wait till another notifies a
(finish running of a section of the codes at a task or ISR). It provides a way of signalling
occurrence. It provides a way of signalling taking of a note of the event. Semaphore can be
a signalling or notifying variable (token). :

{
0OSSemPend (sdispT) /* Wait for the semaphore sdispT. This means that task waits till sdispT is pi;ied
t

2. Semaphore increments when posted (sent or released) by a task or ISR instruction and decmr?ents

when accepted or taken by the waiting task section.
3. A waiting task section is notified to start on sending the semaphore. A waiting task section §
taking the semaphore. £

7.7.2 Use of a Semaphore as Resource Key and for Critical Section

i

OS provides for the use of a single semaphore as a resource key and for running of the codes in critical section.

or printer) notifies to the OS to have taken the semaphore (take notice). [An OS function, e.g., OSSe:
runs to notify. The OS returns the semaphore as taken (accepted) by decrementing the semaphore fro:
Now, the task A accesses the resource (e.g., accesses the file, or network or runs the section of codes).
The task A, after completing access to a resource (e.g., memory buffer or file or network, or critical
it notifies to the OS to have posted that semaphore (post notice). [An OS function, e.g., OSSemPost (
notify. The OS returns the semaphore as released by incrementing the semaphore from 0 to 1.]

A task A, when getting access to a resource (e.g., printer file or network or section of codes called critic? section

end ()
!toO.]

"
séction)
) tuns to




